Self Studies

Sequences and Series Test - 30

Result Self Studies

Sequences and Series Test - 30
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $${ b }_{ i }=1-{ a }_{ i },na=\sum _{ i=1 }^{ n }{ { a }_{ i } } ,nb=\sum _{ i=1 }^{ n }{ { b }_{ i } } \quad $$, then $$\sum _{ i=1 }^{ n }{ { { a }_{ i }b }_{ i } } +\sum _{ i=1 }^{ n }{ { \left( { a }_{ i }-a \right)  }^{ 2 } } =$$
    Solution
    $$a_1+b_1=1 \quad \quad na=a_1+a_2+a_3+...+a_n \quad (1) \\ a_2+b_2=1 \quad \quad nb=b_1+b_2+b_3+....+b_n \quad (2) \\ a_3+b_3=1 \\ ----- \\ \underline{a_n+b_n=1} \\ (a_1+a_2+a_3+...+a_n)+(b_1+b_2+b_3+....+b_n)=n \quad (3)$$
    From $$(1),(2),(3)$$
    $$na+nb=n \\ a+b=1 \quad \quad (4)$$
    $${ \sum   }_{ i=1 }^{ n }{ a }_{ i }{ b }_{ i }+{ \sum   }_{ i=1 }^{ n }{ ({ a }_{ i }-a) }^{ 2 }\\ \Rightarrow { \sum   }_{ i=1 }^{ n }{ a }_{ i }(1-{ a }_{ i })+{ \sum   }_{ i=1 }^{ n }{ { a }_{ i } }^{ 2 }+{ \sum   }_{ i=1 }^{ n }{ a }^{ 2 }-2{ \sum   }_{ i=1 }^{ n }{ a }_{ i }a\\ \Rightarrow { \sum   }_{ i=1 }^{ n }{ a }_{ i }-{ \sum   }_{ i=1 }^{ n }{ { a }_{ i } }^{ 2 }+{ \sum   }_{ i=1 }^{ n }{ { a }_{ i } }^{ 2 }+{ a }^{ 2 }{ \sum   }_{ i=1 }^{ n }(1)-2a{ \sum   }_{ i=1 }^{ n }{ a }_{ i }\\ =(1-2a){ \sum   }_{ i=1 }^{ n }{ a }_{ i }+{ a }^{ 2 }{ \sum   }_{ i=1 }^{ n }(1)\\ =(1-2a)(na)+{ a }^{ 2 }(n)\\ =na-2{ a }^{ 2 }n+{ a }^{ 2 }n\\ =na-{ a }^{ 2 }n\\ =na(1-a)\\ =nab\quad \quad from(4)$$
  • Question 2
    1 / -0
    The sum of the first $$n$$ terms of the series $${ 1 }^{ 2 }+2\cdot { 2 }^{ 2 }+{ 3 }^{ 3 }+2\cdot { 4 }^{ 2 }+{ 5 }^{ 2 }+2\cdot { 6 }^{ 2 }+\cdots $$ is $$\dfrac { n{ \left( n+1 \right)  }^{ 2 } }{ 2 } $$ when $$n$$ is even, when $$n$$ is odd the sum is
    Solution
    The sum of $$n$$ terms of given series $$=\dfrac { n{ \left( n+1 \right)  }^{ 2 } }{ 2 } $$
    Let $$n$$ is odd, i.e., $$n=2m+1$$
    Then, $${ S }_{ 2m+1 }\equiv { S }_{ 2m }+\left( 2m+1 \right) $$th term
    $$=\dfrac { \left( n-1 \right) { n }^{ 2 } }{ 2 } +n$$th term
    $$=\dfrac { \left( n-1 \right) { n }^{ 2 } }{ 2 } +{ n }^{ 2 }$$
    $$=\dfrac { \left( n+1 \right) { n }^{ 2 } }{ 2 } $$
  • Question 3
    1 / -0

    Directions For Questions

    In the questions a number series is given with one term missing shown by question mark(?). This term is one of the four alternatives given under it. Find the right alternative.

    ...view full instructions

    $$4,9,25,?,121,169$$
    Solution
    Given series is $$4,9,25,?,121, 168$$
    It can be written as $${2}^{2},{3}^{2},{5}^{2},{7}^{2},{11}^{2},{13}^{2}$$
    So, the missing term would be $$7^2$$ i.e. $$49$$.
  • Question 4
    1 / -0
    Find the missing number in the circle:

    Solution
    $$3\times 2 - 1, 5\times 2 - 1, 9\times 2 - 1, 17\times 2 - 1 + 39 = 72$$.

    $$\therefore$$ The solution is $$72$$.

  • Question 5
    1 / -0
    If $$\displaystyle \sum_{r = 1}^{n}t_{n} = \dfrac {n(n +1)(n + 2)(n + 3)}{8}$$, then $$\displaystyle \sum_{r = 1}^{n} \dfrac {1}{t_{1}}$$ equals
    Solution

  • Question 6
    1 / -0
    Select the INCORRECT match
    Solution
    (a) $$MMMCCXLIX=3000+200+40+9=3249$$
    (b) $$MDCLXVII=1000+500+100+60+7=1667$$
    (c) $$CCXVII=217=200+17$$
    (d) $$CDXCIX=400+90+9=499$$
    Hence the correct match is option C.
  • Question 7
    1 / -0
    Let $$r^{th} $$ term of a series is given by, $$T_r = \dfrac {r}{1-3r^2 + r^4} .$$
    Then $$ \underset {n \rightarrow \infty}{\lim} \sum_{r=1}^n T_r $$ is 
    Solution
    $${ T }_{ r }=\cfrac { r }{ { ({ r }^{ 2 }-1) }^{ 2 }-{ r }^{ 2 } } =\cfrac { r }{ ({ r }^{ 2 }-1+r)({ r }^{ 2 }-1-r) } $$   

    $$ { T }_{ r }=\cfrac { 1 }{ 2 } \cfrac { ({ r }^{ 2 }+r-1)-({ r }^{ 2 }-r-1) }{ ({ r }^{ 2 }-1+r)({ r }^{ 2 }-1-r) } $$   

    $$ { T }_{ r }=\cfrac { 1 }{ 2 } \left[ \cfrac { 1 }{ ({ r }^{ 2 }-1-r) } -\cfrac { 1 }{ ({ r }^{ 2 }-1+r) }  \right] $$   

    $$ { T }_{ 1 }=\cfrac { 1 }{ 2 } \left[ -1-\cfrac { 1 }{ 1 }  \right] $$   

    $$ { T }_{ 2 }=\cfrac { 1 }{ 2 } \left[ \cfrac { 1 }{ 1 } -\cfrac { 1 }{ 5 }  \right] $$   

    $$ { T }_{ 3 }=\cfrac { 1 }{ 2 } \left[ \cfrac { 1 }{ 5 } -\cfrac { 1 }{ 11 }  \right] $$   

    $$ { T }_{ n }=\cfrac { 1 }{ 2 } \left[ \cfrac { 1 }{ ({ n }^{ 2 }-1-n) } -\cfrac { 1 }{ ({ n }^{ 2 }-1+n) }  \right] $$

    Adding all we get
    $${ S }_{ n }=\cfrac { 1 }{ 2 } \left[ -1-\cfrac { 1 }{ ({ n }^{ 2 }-1-n) }  \right] $$   

    $$ \underset { n\rightarrow \infty  }{ \lim   } { \sum   }_{ r=1 }^{ n }{ T }_{ n }=\underset { n\rightarrow \infty  }{ \lim   } \cfrac { 1 }{ 2 } \left[ -1-\cfrac { 1 }{ ({ n }^{ 2 }-1-n) }  \right] =\cfrac { -1 }{ 2 } (1-0)=\cfrac { -1 }{ 2 } $$
  • Question 8
    1 / -0
    Figures $$1$$ and $$2$$ are related in a particular manner. Establish the same relationship between figures $$3$$ and $$4$$ by choosing a figure from amongst the options.

    Solution
    Hexagon is rotating in anti-clockwise direction two times to get the next figure. (1 to 2).
    Same for getting the figure (3 to 4) rotate the figure in an anti-clockwise direction (two times) we will get the desired figure.
  • Question 9
    1 / -0
    The value of $$\sum _{ n=1 }^{ \infty  }{ { \left( -1 \right)  }^{ n+1 }\left( \cfrac { n }{ { 5 }^{ n } }  \right)  } $$ equals
    Solution

  • Question 10
    1 / -0
    Let S be the infinite sum given by $$S=\displaystyle \sum_{n=0}^{\infty}\frac{a_n}{10^{2n}}$$, where $$(a_n)_{n\geq 0}$$ is a sequence defined by $$a_0=a_1=1$$ and $$a_j=20a_{j-1}$$ for $$j\geq 2$$. If $$S$$ is expressed in the form $$\displaystyle\frac{a}{b}$$, where $$a, b$$ are coprime positive integers, than $$a$$ equals.
    Solution
    Given, $$ S = \sum_{n=0}^\infty \dfrac{a_n}{10^{2n}}$$
    Expanding the summation, we get
    $$ S = \dfrac{a_0}{1}+\dfrac{a_1}{10^2}+\dfrac{a_2}{10^4}+\dfrac{a_3}{10^6}+\dfrac{a_4}{10^8}+\dots$$
    On substituting the given values, we have 
    $$S = 1+\dfrac{1}{10^2}+\dfrac{20}{10^4}+\dfrac{20^2}{10^6}+\dfrac{20^3}{10^8}+\dots$$
    $$S = 1+\dfrac{1}{10^2}+\dfrac{2}{10^3}+\dfrac{2^2}{10^4}+\dfrac{2^3}{10^5}+\dots$$
    $$S = 1+\dfrac{1}{10^2}\left\lbrace 1 + \dfrac{2}{10}+\dfrac{2^2}{10^2}+\dfrac{2^3}{10^3}+\dots\right\rbrace$$
    $$S = 1+\dfrac{1}{10^2}\left\lbrace 1 + \dfrac{1}{5}+\dfrac{1}{5^2}+\dfrac{1}{5^3}+\dots\right\rbrace$$
    Since the terms in the bracket form an infinite geometric progression, we can sum them as
    $$S = 1+\dfrac{1}{10^2}\left\lbrace \dfrac{1}{1-\dfrac{1}{5}} \right \rbrace$$
    $$S = 1+\dfrac{1}{10^2}\left\lbrace \dfrac{5}{4} \right \rbrace$$
    $$S = 1+\dfrac{5}{400}$$
    $$S = \dfrac{405}{400}$$
    As we have coprime numerator and denominator requirement,
    $$\dfrac{a}{b} = \dfrac{81}{80}$$
    Hence, the required answer is $$81$$.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now