Self Studies

Sequences and Series Test - 32

Result Self Studies

Sequences and Series Test - 32
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Geometric mean of $$7,\ { 7 }^{ 2 },\ { 7 }^{ 3 }....{ 7 }^{ n }$$ is
    Solution
    $$Gm$$ of two no $$a$$ & $$b=\sqrt {ab}$$
    For $$aGP$$
    $$GM=\sqrt {a_1. an}$$
    $$\Rightarrow \ GM $$ of $$7, 7^2, ..... 7^n$$
    $$=\sqrt {7.7^n}$$
    $$=7\dfrac {(n+1)}{2}$$
  • Question 2
    1 / -0
    Suppose $$a_2,a_3,a_4,a_5,a_6,a_7$$ are integers such that
    $$\dfrac {5}{7}=\dfrac {a_2}{2!}+\dfrac {a_3}{3!}+\dfrac {a_4}{4}+\dfrac {a_5}{5!}+\dfrac {a_6}{6!}+\dfrac{a_7}{7!}$$
    where $$0 \le a < j$$ for $$ j=2,4,5,6,7.$$ The sum $$a_2+a_3+a_4+a_5+a_6+a_7$$ is 
    Solution

    $$\cfrac { 5 }{ 7 } =\cfrac { { a }_{ 2 } }{ 2! } +\cfrac { { a }_{ 3 } }{ 3! } +\cfrac { { a }_{ 4 } }{ 4! } +\cfrac { { a }_{ 5 } }{ 5! } +\cfrac { { a }_{ 6 } }{ 6! } +\cfrac { { a }_{ 7 } }{ 7! } \\ \Rightarrow \cfrac { 5 }{ 7 } =\cfrac { 1 }{ 2 } \left( { a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 }  \right)  \right)  \right)  \right) \\ \cfrac { 10 }{ 7 } ={ a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 }  \right)  \right)  \right) \\ 1+\cfrac { 3 }{ 7 } ={ a }_{ 2 }+\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\left( \cfrac { { a }_{ 7 } }{ 7 }  \right)  \right)  \right) $$

    So, as expression is less than $$1$$

    $${ a }_{ 2 }=1\\ \cfrac { 3 }{ 7 } =\cfrac { 1 }{ 3 } \left( { a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\cfrac { 1 }{ 5 } \left( { a }_{ 5 }+.....\cfrac { { a }_{ 7 } }{ 7 }  \right)  \right)  \right) \\ 1+\cfrac { 2 }{ 7 } ={ a }_{ 3 }+\cfrac { 1 }{ 4 } \left( { a }_{ 4 }+......\cfrac { 1 }{ 5 } \left( { a }_{ 5 }+\cfrac { 1 }{ 6 } \left( { a }_{ 6 }+\cfrac { { a }_{ 7 } }{ 7 }  \right)  \right)  \right) \\ { a }_{ 3 }=1$$

    Similarly

    $${ a }_{ 4 }=1\quad \quad { a }_{ 7 }=2\\ { a }_{ 5 }=0\\ { a }_{ 6 }=4$$

    So, Sum $${ a }_{ 7 }-1+1+1+4+2\\ =9$$

     

  • Question 3
    1 / -0
    The value of the sum $$1.2.3+2.3.4+3.4.5+.......$$ upto n terms=
    Solution
    Sum of $$1.2.3+2.3.4+3.4.5+.......$$ upto $$n$$ terms
    $$T_{n}={n}\left(n+1\right)\left(n+2\right)$$
    $$S_{n}=$$ Sum of $$T_{n}$$
    $$=\sum _{ n=1 }^{ n }{ n\left( n+1 \right) \left( n+2 \right)  }$$
    $$=\sum{n}^{3}+{3}{n}^{2}+2n$$

    $$\sum{n}^{3}+3\sum{n}^{2}+2\sum{n}$$

    $$=\dfrac { { \left( n \right)  }^{ 2 }{ \left( n+1 \right)  }^{ 2 } }{ 4 } +\dfrac { 3\left( n \right) \left( n+1 \right) \left( 2n+1 \right)  }{ 6 } +\dfrac { 2\left( n \right) \left( n+1 \right)  }{ 2 } $$

    $$=\dfrac { 1 }{ 4 } n\left( n+1 \right) \left( n+2 \right) \left( n+3 \right)$$
    Hence, it is the correct answer.
  • Question 4
    1 / -0
    If $$x\in R$$, find the minimum value of the expression $$3^x+3^{1-x}$$.
    Solution
    We know,
    $$AM > GM$$
    Therefore,
    $$\dfrac{3^x+3^{1-x}}{2} \geq \sqrt{3^x \times 3^{1-x}}$$ for all $$x\in R$$.

    $$\dfrac{3^x+3^{1-x}}{2} \geq \sqrt{3}$$ for all $$x\in R$$.

    $$3^x+3^{1-x} \geq 2\sqrt{3}$$ for all $$x\in R$$

    Hence, the required value is $$2\sqrt{3}$$.
  • Question 5
    1 / -0
    The sum of the first n terms of the series $$1^2 + 2.2^2 + 3^2 + 2.4^2 + 5^2 + 2.6^2 +$$ ...... is  $$\dfrac{n(n + 1)^2}{2}$$  when n is even.When n is odd the sum is -
    Solution
    $${ 1 }^{ 2 }+2.{ 2 }^{ 2 }+{ 3 }^{ 2 }+2.{ 4 }^{ 2 }+{ 5 }^{ 2 }+2.{ 6 }^{ 2 }+.......\\ ({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+.....{ n }^{ 2 })+2({ 2 }^{ 2 }+{ 4 }^{ 2 }+{ 6 }^{ 2 }+......)\\ =({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+.....{ n }^{ 2 })+2.2({ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+......)\\ =({ 1 }^{ 2 }+{ 3 }^{ 2 }+{ 5 }^{ 2 }+.....{ n }^{ 2 })+{ 2 }^{ 2 }({ 1 }^{ 2 }+{ 2 }^{ 2 }+{ 3 }^{ 2 }+......)\\ =\cfrac { n(4{ n }^{ 2 }-1) }{ 3 } +4[\cfrac { n(n+1)(2n+1) }{ 6 } ]\\ =\cfrac { n(4{ n }^{ 2 }-1) }{ 3 } +\cfrac { 2({ n }^{ 2 }+n)(2n+1) }{ 3 } \\ =\cfrac { 4{ n }^{ 3 }-n+(4n+2)({ n }^{ 2 }+n) }{ 3 } \\ =\cfrac { 4{ n }^{ 3 }-n+4{ n }^{ 3 }+4{ n }^{ 2 }+2{ n }^{ 2 }+2n }{ 3 } \\ =\cfrac { 8{ n }^{ 3 }+6{ n }^{ 2 }+n }{ 3 } $$
  • Question 6
    1 / -0
    If $$28\div 11 = 8, 39\div 21 = 7, 45\div 27 = 4$$, then $$95\div 25 = ?$$
    Solution
    $$28\div 11 \Rightarrow [(2 + 8) \div (1 + 1)] + 3$$
    $$= (10\div 2) + 3 = 5 + 3 = 8$$
    $$39\div 21 \Rightarrow [(3 + 9) \div (2 + 1)] + 3$$
    $$= (12\div 3) + 3 = 4 + 3 = 7$$
    $$45\div 27 \Rightarrow [(4 + 5) \div (2 + 7)] + 3$$
    $$= (9\div 9) + 3 = 1 + 3 = 4$$
    $$\therefore 95\div 25\Rightarrow [(9 + 5) \div (2 + 5)] + 3$$
    $$= (14\div 7) + 3 = 2 + 3 = 5$$.
  • Question 7
    1 / -0
    The odd natural numbers have been divided in groups as $$(1, 3); (5, 7, 9, 11); (13, 15, 17, 19, 21, 23); .....$$ Then the sum of numbers in the $$10^{th}$$ group is
    Solution
    Numbers in first group $$= 2$$
    Numbers in second group $$= 4$$
    Numbers in $$9^{th}$$ group $$= 18$$
    Numbers in $$10^{th}$$ group $$= 20$$
    Total numbers in $$1^{st}$$ to $$9^{th}$$ group
    $$= 2 + 4 + .....18$$
    $$= 2 (1 + ..... 9) = 2\times \dfrac {9\times 10}{2} = 90$$
    Total numbers in $$10^{th}$$ group =110
    Sum of first $$N$$ odd numbers $$=n^2$$ 
    sum of numbers in $$10^{th}$$ group = sum till $$10^{th}$$ group - Sum till $$9^{th}$$ group
    $$= 110^{2} - 90^{2}$$
    $$= (110 + 90)(110 - 90)$$
    $$= 200\times 20 = 4000$$.
  • Question 8
    1 / -0
    In a row of girls, Mridula is $$18^{th}$$ from the right and Sanjana is $$18^{th}$$ from the left. If both of them interchange their position, Sanjana becomes $$25^{th}$$ from the left, how many girls are there in the row?
    Solution
    Total number of girls $$=$$ (Position of Sanjana from left $$+$$ Position of Sanjana from right) $$- 1 = (25 + 18) - 1 = 42$$.

  • Question 9
    1 / -0
    A series whose $$n^{th}$$ term is $$\lgroup \dfrac{n}{x}\rgroup + y$$, the sum of r terms will be 
    Solution
    $$a_n = \dfrac{n}{x}+y$$

    Sum of r terms

    $$= \sum_{n=1}^{r}\left ( \dfrac{n}{x}+y \right )$$

    $$=\sum_{n=1}^{r} \dfrac{n}{x}+\sum_{n=1}^{r} y $$

    $$=\left ( \dfrac{1}{x}+\dfrac{2}{x}+.........+\dfrac{r}{x} \right )+\left ( y+y+.........+y \right )$$

    $$= \dfrac{1}{x}(1+2+3+...........+r)+ry$$

    $$= \dfrac{r(r+1)}{2x} +ry$$
  • Question 10
    1 / -0
    Choose the correct answer from the alternatives given.
    A loss of $$20%$$ is incurred when $$6$$ articles are sold for a rupee. To gain $$20% $$ how many articles should be sold for a rupee?
    Solution
    : Given that, SP = $$1$$. Loss$$ % = 20%$$ We know that, $$SP = 0.8$$ $$\times$$ $$CP$$
    $$CP \, = \, \dfrac{5}{4}$$
    To gain$$ 20%$$,SP=1.2 $$\displaystyle \times \, CP \, = \, \dfrac{120}{100} \, \times \, \dfrac{5}{4} \, = \, \dfrac{3}{2} \, \Rightarrow \, = \, \dfrac{3}{2}$$
    For$$ Rs. 3/2$$ number of articles sold
    For $$Rs. 1$$ number of articles to be sold $$= 6 $$ $$\times$$ $$ \dfrac{2}{3}$$ = $$  4 $$ articles.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now