Self Studies

Sequences and Series Test - 34

Result Self Studies

Sequences and Series Test - 34
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The value of the product 
    $${ 6 }^{ \frac { 1 }{ 2 }  }\times { 6 }^{ \frac { 1 }{ 4 } }\times { 6 }^{ \frac { 1 }{ 8 } }\times { 6 }^{ \frac { 1 }{ 16 }  }\times ..$$ up to infinite terms is
    Solution
    $$6^{\tfrac12}\times 6^{\tfrac14}\times 6^{\tfrac18}........$$
     
    $$=6^{\left(\tfrac12+\tfrac14+\tfrac18.......\right)}$$

    $$=6^{\left(\tfrac{\tfrac12}{1-\tfrac12}\right)}$$

    $$=6^1=6$$

    Hence, the answer is $$6$$.
  • Question 2
    1 / -0
    Select the missing number from the given alternatives.
    $$3$$$$4$$$$2$$$$14$$
    $$6$$$$5$$$$4$$$$44$$
    $$5$$$$2$$$$7$$?
    Solution
    $$3\times 2 + 4\times 2 = 6 + 8 = 14$$
    $$6\times 4 + 5\times 4 = 24 + 20 = 44$$
    Hence, $$5\times 7 + 2 \times 7 = 35 + 14 = 49$$.
  • Question 3
    1 / -0
    If $$12\times 16 = 188$$ and $$14\times 18 = 248$$, then find the value of $$16\times 20 = ?$$
    Solution
    $$12\times 16 = 192 - 4 = 188$$
    $$14\times 18 = 252 - 4 = 248$$
    $$16\times 20 = 320 - 4 = 316$$.
  • Question 4
    1 / -0
    If a and b are two unequal positive numbers, the:
    Solution
    a and b are two unequal positive numbers.
    $$\therefore A.M>G.M>H.M\\ \cfrac { a+b }{ 2 } >\sqrt { ab } >\cfrac { 2ab }{ a+b } $$
  • Question 5
    1 / -0
    If $$y = x+x^2+x^3+...$$ up to infinite terms, where $$ x<1$$, then which one of the following is correct?
    Solution
    Given $$y=x+x^2+x^3+...\infty$$
    $$y=x(1+x+x^2+x^3+.....\infty)$$
    We know that $$x+x^2+x^3+x^4....\infty =y$$
    $$y=x(1+y)$$
    $$x=\dfrac{y}{1+y}$$
  • Question 6
    1 / -0
    The value of $$\dfrac { 1 }{ \log _{ 3 }{ e }  } +\dfrac { 1 }{ \log _{ 3 }{ e^2 }  } +\dfrac { 1 }{ \log _{ 3 }{ e^4 }  } +...$$  up to infinite terms is
    Solution
    We can write $$\log_{3} e^2=2\log_{3} e$$

    Similarly, $$\log_{3} e^4=4\log_{3} e$$ and so on

    Let $$t=\dfrac{1}{\log_{ \ 3}e} $$

    So, $$\dfrac{1}{\log_{ \ 3}e} + \dfrac{1}{\log_{ \ 3}e^2} +\dfrac{1}{\log_{ \ 3}e^4}..... =\dfrac{1}{\log_{ \ 3}e} + \dfrac{1}{2\log_{ \ 3}e} +\dfrac{1}{4\log_{ \ 3}e}..... $$
    $$=t+\dfrac{t}{2}+\dfrac{t}{4}....$$
    $$=t\left(1+\dfrac12+\dfrac14+\dfrac18+.....\right)$$ 
    $$=t\times \dfrac{1}{1-\dfrac12}=2t$$

    Now, $$2t=2\dfrac{1}{\log_{ \ 3}e} =2\dfrac{1}{\dfrac{\log e}{\log3}}=2\dfrac{\log 3}{\log e}=2\log_{e}3$$ $$=\log_{e}9$$

    Therefore, the answer is $$\log_{e}9$$.
  • Question 7
    1 / -0
    If $$x =1-y+{ y }^{ 2 }-{ y }^{ 3 }+...$$ upto infinite terms, where |y| < 1, then which one of the following is correct?
    Solution

  • Question 8
    1 / -0
    If $$1.3 + 2.3^2 + 3.3^3 +...+ n.3^n $$= $$\dfrac { (2n-1)3^ a+b }{ 4 }$$ then $$a$$ and $$b$$ are respectively 
    Solution
    $$1.3 + 2.3^2 + 3.3^3 +...+ n.3^n $$

    this can be wriiten as $$0.3^0+1.3 + 2.3^2 + 3.3^3 +...+ n.3^n $$

    Sum of $$n$$ terms in AGP is $$S_n=\dfrac{a-[a+(n-1)d]r^n}{1-r}+\dfrac{dr(1-r^{n-1})}{(1-r)^2}$$

    Here $$a=0,d=1,n=n ,r=3 $$

    Substituting in the given formula we get,

    $$S_n=\dfrac{(n-1)3^n}{2}+\dfrac{3(1-3^{n-1})}{4}$$

    $$S_n=\dfrac{2(n-1)3^n+3-3^n}{4}$$

    $$S_n=\dfrac{(2n-1)3^{n+1}+3}{4}$$

    Thus, $$a$$ and $$b$$ are $$n+1$$ and $$3$$ respectively.
  • Question 9
    1 / -0
     General term of 4 + 6 + 9 + 13 + 18 + .......to n terms
    Solution

  • Question 10
    1 / -0
    $$\displaystyle \sum _{ k=1 }^{ 6 }{ \left[ sin\frac { 2k\pi  }{ 7 } -i\quad cos\quad \frac { 2k\pi  }{ 7 }  \right]  } =$$

    Solution
    $$\displaystyle-i\sum _{ k=1 }^{ 6 }{ \left( cos\frac { 2k\pi  }{ 7 } +i\quad sin\frac { 2k\pi  }{ 7 }  \right)  } =$$
    $$-i\quad \left[ 1+\alpha +{ \alpha  }^{ 2 }+....+{ \alpha  }^{ 6 }-1 \right] =\quad -i\left[ 0-1 \right] =i$$


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now