Self Studies

Sequences and Series Test - 35

Result Self Studies

Sequences and Series Test - 35
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    For some natural $$N$$ , the number of positive integral $$x$$ satisfying the equation, 
    $$1!+2!+3!+......+(x)!=(N)^2$$ is :
    Solution
    $$1!+2!+3!+......+(x)!=(N)^2$$ is true for $$x=1, x=3$$ in that case $$N=1,N=3$$ respectively.
    For, $$x=4$$, we have $$1!+2!+3!+4!=33$$ which is not a perfect square.
    Again for $$x\geq 5$$ $$1!+2!+....+(x)!$$ is of the form $$10k+3 $$ for $$k$$ is some natural number. In these cases, the given sum is not going to be a perfect square.
    So, two values of $$x$$ satisfies the given equation.
  • Question 2
    1 / -0
    Arrange these numbers in ascending order. 
    $$756, 567, 657, 676$$ 
    Solution
    $$\Rightarrow$$  Numbers are said to be in ascending order when they are arranged from the smallest to the largest number.
    $$\Rightarrow$$  The numbers which we have to arrange in ascending order are $$756,\,567,\,657$$ and $$676$$
    $$\Rightarrow$$  $$567<657<676<756$$
    $$\therefore$$  Ascending order $$=567,\,657,\,676,\,756$$
  • Question 3
    1 / -0
    $$If\quad { sin }^{ -1 }\left( x-\frac { { x }^{ 2 } }{ 2 } +\frac { { x }^{ 3 } }{ 4 } -......\infty  \right) +{ cos }^{ -1 }\left( { x }^{ 2 }-\frac { { x }^{ 4 } }{ 2 } +\frac { { x }^{ 6 } }{ 4 } -.....\infty  \right) =\frac { \pi  }{ 2 } \quad and\quad 0<x<\sqrt { 2 } \quad then\quad x=$$

    Solution
    $$x-\frac { { x }^{ 2 } }{ 2 } +\frac { { x }^{ 3 } }{ 4 } +...\infty ={ x }^{ 2 }-\frac { { x }^{ 4 } }{ 2 } +\frac { { x }^{ 6 } }{ 4 } -...\infty \quad x={ x }^{ 2 }\Rightarrow x=1$$
  • Question 4
    1 / -0
    If $$S_n=\sum\limits_{r=1}^n \dfrac{2r+1}{r^4+2r^3+r^2}$$ then $$S_{20}$$ =
    Solution
    $$\dfrac{2r+1}{r^4+2r^3+r^2}=\dfrac{2r+1}{r^2(r+1)^2}=\dfrac{(r+1)^2-r^2}{r^2(r+1)^2}$$
    =$$\dfrac{1}{r^2}-\dfrac{1}{(r+1)^2} \therefore \sum\limits_{r=1}^{20}\Big[\dfrac{1}{r^2}-\dfrac{1}{(r+1)^2}\Big]$$
    Put r=1, 2, 3, .........20 and terms will cancel diagonally.
    $$\therefore \sum \dfrac{1}{1}-\dfrac{1}{(20+1)^2}=1-\dfrac{1}{441}=\dfrac{440}{441}$$.
  • Question 5
    1 / -0
    The sum to $$50$$ terms of the series $$\dfrac {1}{2} + \dfrac {3}{4} + \dfrac {7}{8} + \dfrac {15}{16} + ....$$ is equal to
    Solution
    $$T_{n} = \dfrac {2^{n} - 1}{2^{n}} = 1 - \left (\dfrac {1}{2}\right )^{n}$$
    $$\therefore S_{n} = n - \displaystyle \sum_{n = 1}^{n} \left (\dfrac {1}{2}\right )^{n} = n - \dfrac {\dfrac {1}{2} . [1 - (1/2)^{n}]}{1 - 1/2}$$
    $$= n + 2^{-n} - 1$$.
  • Question 6
    1 / -0
    $$\sum\limits_{r=1}^{50}\Big[ \dfrac{1}{49+r}-\dfrac{1}{2r(2r-1)}\Big]=$$
    Solution
    $$\sum\limits_{r=1}^{50} \cfrac{1}{2r(2r-1)}=\sum\limits_{r=1}^{50}\Big(\cfrac{1}{2r-1}-\cfrac{1}{2r}\Big)$$
    $$=\Big( 1-\cfrac{1}{2}+\cfrac{1}{3}-\cfrac{1}{4}+........+\cfrac{1}{99}-\cfrac{1}{100}\Big)$$
    $$= \Big(1+\cfrac{1}{2}+\cfrac{1}{3}+\cfrac{1}{4}+.........+\cfrac{1}{100}\Big)-2\Big(\cfrac{1}{2}+\cfrac{1}{4}+............+\cfrac{1}{100}\Big)$$
    $$=\sum\limits{r=1}^{100}\cfrac{1}{r}-\Big(1+\cfrac{1}{2}+.....+\cfrac{1}{50}\Big)$$, i.e.,$$\sum\limits_{r=1}^{50}\cfrac{1}{r}=\sum\limits_{r=51}^{100}\cfrac{1}{r}$$
    $$\therefore E=\sum\limits_{r=1}^{50}\cfrac{1}{49+r}-\sum\limits_{r=51}^{100}\cfrac{1}{r}$$
    $$=\Big[\cfrac{1}{50}+\cfrac{1}{51}+...........+\cfrac{1}{99}\Big] -[\cfrac{1}{51}+\cfrac{1}{52}+............+\cfrac{1}{100}\Big]$$
    $$=\cfrac{1}{50}-\cfrac{1}{100}=\cfrac{2}{100}-\cfrac{1}{100}=\cfrac{1}{100}\Rightarrow (C)$$
  • Question 7
    1 / -0
    The value of $$x$$ satisfying the equation $$\dfrac{5050-\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+......+\dfrac{5049}{5050}\right)}{1+\dfrac{1}{2}+\dfrac{1}{3}+......+\dfrac{1}{5050}}=\dfrac{x}{5050}$$ is 
    Solution
    First we solve,
    $$\left(\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}+.......+\dfrac{5049}{5050}\right)$$
    We can conclude general term or $$n^{th}$$ term,
    $$=\sum_{n=1}^{5049}\dfrac{n}{n+1}$$
    $$=\sum_{n=1}^{5049}\dfrac{n+1-1}{n+1}$$
    $$=\sum_{n=1}^{5049}\left ( 1-\dfrac{1}{n+1} \right )$$

    $$=(1-\dfrac{1}{1+1})+(1-\dfrac{1}{2+1})+.......+(1-\dfrac{1}{5049+1})$$
    $$=(1-\dfrac{1}{2})+(1-\dfrac{1}{3})+.......+(1-\dfrac{1}{5050})$$
    $$=5049-(\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{5050})$$
    Substituting this value in $$LHS$$ of the given expression,
    $$\dfrac{5050-(\dfrac{1}{2}+\dfrac{2}{3}+.......+\dfrac{5049}{5050})}{1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{5050}}$$
    $$=\dfrac{5050-5049+(\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{5050})}{1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{5050}}$$
    $$=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+.......+\dfrac{1}{5050}}{1+\dfrac{1}{2}+\dfrac{1}{3}+........+\dfrac{1}{5050}}$$
    $$=1$$
    Now,
    $$\dfrac{x}{5050}=1$$

    $$x=5050$$
    This is the required value of $$x$$.
  • Question 8
    1 / -0
    If $$\left| a \right| < 1$$ and $$\left| b \right| < 1$$ then $$\eqalign{  &   \cr   & S = 1 + \left( {1 + a} \right)b + \left( {1 + a + {a^2} } \right){b^2} + ...} $$=
    Solution
    Let $$S = 1 + (a + a)b + (1-a+a^2)b^2 + (a+a+a^2+a^3)b^3 + ....$$

    then $$bs = b + (1+a)b^2 + (1+a+a^2)b^3 + (1+a+a^2 + a^3)b^4+.......$$

    Apply $$(S-bS)$$:

    $$S-bS = 1 + b+ab + b^2 + ab^2+a^2-b^2+b^3+ab^3+a^2b^3 + a^3b^2 + .....$$

    $$-b-b^2 - ab^2 - b^3 - ab^3-a^2b^3-b^4-ab^4 - a^2b^4-a^3b^4$$ ......

    $$S-bS = 1 + ab + a^2b^2 + a^3b^3 +.....$$

    the above series is in G.P.

    $$S(1-b) = \dfrac{1}{(1-ab)}$$

    $$S = \dfrac{1}{(1-ab)(1-b)}$$

    $$\therefore$$ option A is correct.
  • Question 9
    1 / -0
    If $$\left| a \right| < 1$$ and $$\left| b \right| < 1$$ then $$s = 1 + \left( {1 + a} \right)b + \left( {1 + a + {a^2}} \right){b^2} + \left( {1 + a + {a^2} + {a^3}} \right){b^3} + ...is - .$$
    Solution
    $$S=(1+b+b^2+b^3+....)+ab(1+b+b^2+....)+a^2b^2(1+b+b^2+...)+...$$
    Since using sum to infinity for G.P we get
    $$S=\cfrac{1}{1-b}+\cfrac{ab}{1-b}+\cfrac{a^2b^2}{1-b}+....\\S=\cfrac{1}{1-b}(1+ab+a^2b^2+....)$$
    Using G.P for sum to infinity, we get
    $$S=\cfrac{1}{1-b}\times\cfrac{1}{1-ab}=\cfrac{1}{(1-b)(1-ab)}$$
  • Question 10
    1 / -0
    If $$1 + {x^2} = \sqrt {3}x $$, then $$\displaystyle \prod\limits_{n = 1}^{24} {\left( {x^n} + \dfrac {1} {x^n} \right)} $$ is equal to 
    Solution
    $$1+{x}^{2}=\sqrt{3}x$$
    $$\Rightarrow\,\dfrac{1}{x}+x=\sqrt{3}$$
    $$\Rightarrow\,x+\dfrac{1}{x}=\sqrt{3}$$
    $$\Rightarrow\,{\left(x+\dfrac{1}{x}\right)}^{2}={\left(\sqrt{3}\right)}^{2}$$
    $$\Rightarrow\,{x}^{2}+\dfrac{1}{{x}^{2}}+2x\times \dfrac{1}{x}=3$$
    $$\Rightarrow\,{x}^{2}+\dfrac{1}{{x}^{2}}+2=3$$
    $$\Rightarrow\,{x}^{2}+\dfrac{1}{{x}^{2}}=3-2=1$$
    $$\Rightarrow\,{\left(x+\dfrac{1}{x}\right)}^{3}={\left(\sqrt{3}\right)}^{3}$$
    $$\Rightarrow\,{x}^{3}+\dfrac{1}{{x}^{3}}+3x\times \dfrac{1}{x}\left(x+\dfrac{1}{x}\right)=3\sqrt{3}$$
    $$\Rightarrow\,{x}^{3}+\dfrac{1}{{x}^{3}}+3\left(\sqrt{3}\right)=3\sqrt{3}$$ since $$x+\dfrac{1}{x}=\sqrt{3}$$
    $$\Rightarrow\,{x}^{3}+\dfrac{1}{{x}^{3}}=3\sqrt{3}-3\sqrt{3}=0$$
    $$\displaystyle\prod_{n=1}^{24}{{x}^{n}+\dfrac{1}{{x}^{n}}}=\left(x+\dfrac{1}{x}\right)\left({x}^{2}+\dfrac{1}{{x}^{2}}\right)\left({x}^{3}+\dfrac{1}{{x}^{3}}\right)...\left({x}^{24}+\dfrac{1}{{x}^{24}}\right)=0$$ since $${x}^{3}+\dfrac{1}{{x}^{3}}=0$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now