Self Studies

Sequences and Series Test - 36

Result Self Studies

Sequences and Series Test - 36
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the series $$\dfrac{1}{(1\times 2)}+\dfrac{1}{(2\times 3)}+\dfrac{1}{(3\times 4)}+.......+\dfrac{1}{(100\times 101)}$$ is equal to

    Solution
    $$\dfrac{1}{1\times 2}+\dfrac{1}{2\times 3}+\cdots +\dfrac{1}{100\times 101}=\dfrac{2-1}{1\times 2}+\dfrac{3-2}{2\times 3}+\cdots+\dfrac{101-100}{100\times 101}=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\cdots +\dfrac{1}{100}-\dfrac{1}{101}=1-\dfrac{1}{101}=\dfrac{100}{101}$$
  • Question 2
    1 / -0
    If $$(1+3+5+....+p)+(1+3+5+....+q)=(1+3+5+.....+r),$$ where each set of parentheses contains the sum of consecutive odd integers as shown, the smallest possible value of $$p+q+r$$, (where $$P>6$$ ) is :
    Solution
    $$ 1+3+5+...+2n-1 = n^{2} $$
    no. of terms $$ = \dfrac{n+1}{2} $$
    According to question we can write
    $$\left (\dfrac{p+1}{2}\right)^{2}+\left(\dfrac{q+1}{2}\right)^{2}\pm \left(\dfrac{r+1}{2}\right)^{2} $$
    It forms Pythagoras triplet Thus for min value 
    take 3, 4 and 5 as our Pythagoras triplet
    $$ \therefore \dfrac{p+1}{2} = 4 $$   $$ \dfrac{q+1}{2} = 3 $$   $$ \dfrac{r+1}{2} = 5 $$
    $$ p = 7 $$                   $$ q = 5 $$             $$ r = 9 $$
    $$ p + q + r = 21 $$ 

  • Question 3
    1 / -0
    Let $$T_{n}=\displaystyle  \sum _{ r=1 }^{ n }{ \dfrac { n }{ { r }^{ 2 }-2r.n+2{ n }^{ 2 } } ,{ S }_{ n }=\displaystyle  \sum _{ r=0 }^{ n-1 }{ \dfrac { n }{ { r }^{ 2 }-2r.n+{ 2n }^{ 2 } }  }  }$$, then
    Solution
    Sol $$T_{n}=\displaystyle  \sum _{ r=1 }^{ n }{ \dfrac { n }{ { r }^{ 2 }-2r.n+2{ n }^{ 2 } } ,{ S }_{ n }=\displaystyle  \sum _{ r=0 }^{ n-1 }{ \dfrac { n }{ { r }^{ 2 }-2r.n+{ 2n }^{ 2 } }  }  }$$
    On expanding $$ T_{n} $$ and $$ S_{2} $$ we get 
    $$ T_{n} = \dfrac{n}{2n^{2}-2n+1}+\dfrac{n}{2n^{2}-4n+4}+\dfrac{n}{2n^{2}-6n+9}+...+\dfrac{n}{n^{2}} ... (1) $$
    and 
    $$ S_{n} = \dfrac{n}{2n^{2}}+\dfrac{n}{2n^{2}-2n+1}+\dfrac{n}{2n^{2}-4n+4}+...+\dfrac{n}{2n^{1}-2n^{2}+2n+(n-1)^{2}} $$
    $$ S_{n} = \dfrac{n}{2n^{2}}+\dfrac{n}{2n^{2}-2n+1}+\dfrac{n}{2n^{2}-2n+4}+...+\dfrac{n}{n^{2}+1}...(2) $$
    from eq (1)
    on comparing $$ T_{n} $$ & $$ S_{2} $$ we can clearly
    see that
    $$ T_{n}\Rightarrow S_{n} $$
    as $$ T_{n} = P+\dfrac{1}{n} $$
    and $$ S_{n} = P+\dfrac{1}{2n} $$
    as $$ P = $$ common part in eq (1) & (2)
    to $$ [T_{n}> S_{n} \forall\ n \epsilon N] $$
    Hence from equation (1) & (2)
    $$ [T_{n} = S_{n}+\dfrac{1}{2n}] $$ 

  • Question 4
    1 / -0
    Let $${n}^{th}$$ term of sequence $$1,2,2,3,3,3,4,4,4,4,5,5,5,5,5,.....$$ is given by $${t}_{n}$$ , then ?
    Solution

    $$no.\>of\>terms\>with\>same\>values\>are\>in\>AP(let's\>call\>them\>as\>a\>group)\\100=(\frac{n(n+1)}{2})\\n(n+1)=200\\for\>n\>=14\\n(n+1)=210\>>\>200\\hence\>all\>terms\>with\>values\>14,\>will\>cover\>group\>including\>100th\>term$$

  • Question 5
    1 / -0
    If $$S_{n}=\dfrac {3}{2}+\dfrac {33}{2^{2}}+\dfrac {333}{2^{2}}+....$$ upto $$n$$ terms $$=\dfrac {a^{n+1}+b^{b-n}-c}{d}$$ (where $$a,b,c,d \epsilon\ N$$), then ?

    Solution

  • Question 6
    1 / -0
    Sum of the series $$1+2.2+3.2^{2}+4.2^{3}+..+100.2^{99}$$ is
    Solution
    It is been clear that the series is in Arithmetic-Geometric progression with
    $$A.P=\quad 1+2+3+.......+100\\ and,\quad G.P=\quad 1+2+{ 2 }^{ 2 }+.....+{ 2 }^{ 99 }\\ Let,\quad S=1+2.2+3.{ 2 }^{ 2 }+4.{ 2 }^{ 3 }+.....+100.{ 2 }^{ 99 }\quad \quad \quad \quad \quad \longrightarrow \quad (1)\\ \text{Multiply the above eauation by} 2\\ 2S=2+2.{ 2 }^{ 2 }+3.{ 2 }^{ 3 }+.....+99.{ 2 }^{ 99 }+100.{ 2 }^{ 100 }\quad \quad \quad \quad \quad \quad \longrightarrow \quad (2)\\ now\quad subtract\quad (2)\quad from\quad (1)\quad we\quad get,\\ \quad \quad \quad \quad S-2S=(1+2+{ 2 }^{ 2 }+....+{ 2 }^{ 99 })-100.{ 2 }^{ 100 }\\ \Rightarrow \quad -S=\frac { ({ 2 }^{ 100 }-1) }{ 2-1 } -100.{ 2 }^{ 100 }\quad \quad (since\quad the\quad above\quad series\quad in\quad bracket\quad is\quad in\quad G.P\quad so\quad { S }_{ n }=\frac { a({ r }^{ n }-1) }{ r-1 } \quad and\quad this\quad \\ \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad is\quad a\quad G.P\quad with\quad 100\quad terms\quad and\quad a=1;\quad r=2)\\ \Rightarrow \quad S=\quad -{ 2 }^{ 100 }+1+100.{ 2 }^{ 100 }\\ \therefore \quad S=\quad 99.{ 2 }^{ 100 }+1\\$$
  • Question 7
    1 / -0
    The value of sum $$\sum _{ n=1 }^{n=\infty  }{ \frac { 2 }{ { 3 }^{ n } }  is\ equal\ to: } $$
    Solution

  • Question 8
    1 / -0
    Pam likes the numbers 1689 and 6891. Knowing this, which pair of numbers will she like among the ones below?
    Solution

  • Question 9
    1 / -0
    The sum of the first $$n$$ terms of the series $$\dfrac{1}{2}+\dfrac{3}{4}+\dfrac{7}{8}+\dfrac{15}{16}+....$$ is 
  • Question 10
    1 / -0
    Find sum $${1}^{2}+{3}^{2}+{5}^{2}+...+{(2n-1)}^{2}$$
    Solution
    $${1^2} + {2^2} + {3^2} + {4^2} + {5^2} + ... + {\left( {2n - 1} \right)^2}$$
    Here  $${a_n} = {\left( {2n - 1} \right)^2}$$
    Sum of the given series $$=$$$$\sum\limits_{n = 1}^n {{a_n}} $$
                                             $$ = \sum\limits_{n = 1}^n {{{\left( {2n - 1} \right)}^2}} $$
                                             $$ = \sum\limits_{n = 1}^n {\left( {4{n^2} + 1 - 4n} \right)} $$
                                              $$= 4\sum\limits_{n = 1}^n {{n^2}}  + \sum\limits_{n = 1}^n 1  - 4\sum\limits_{n = 1}^n n $$
                                              $$ = \dfrac{{4n\left( {n + 1} \right)\left( {2n + 1} \right)}}{6} + n - \dfrac{{4n\left( {n + 1} \right)}}{2}$$
                                              $$ = \dfrac{n}{6}\left[ {8{n^2} + 12n + 4 + 6 - 12n - 12} \right]$$
                                              $$ = \dfrac{n}{6}\left[ {8{n^2} - 2} \right]$$
                                              $$ = \dfrac{n}{3}\left[ {4{n^2} - 1} \right]$$
                                              $$= \dfrac{{n\left( {2n - 1} \right)\left( {2n + 1} \right)}}{3}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now