Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    The sum of infinity of the series $$\dfrac{1}{1} + \dfrac{1}{1 + 2} + \dfrac{1}{1+2+3}+$$______ is equal to:

  • Question 2
    1 / -0

    A series is given as: $$4+7+10+13+16+.....$$ Find the sum of the series up to $$10$$ terms.

  • Question 3
    1 / -0

    If $$a_n=n(n!)$$, then $$\displaystyle\sum^{100}_{r=1} a_r$$ is equal?

  • Question 4
    1 / -0

    If $$a_{1}=a_{2}=2,a_{n}=a_{n-1}-1(n > 2)$$ then $$a_{5}$$ is ?

  • Question 5
    1 / -0

    The sum of the series $$1+\dfrac{1}{4\times 2!}+\dfrac{1}{16\times 4!}+\dfrac{1}{64\times 6!}+....\infty$$ is?

  • Question 6
    1 / -0

    The sum of the series $$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+.+100.2^{99}$$ is  ?

  • Question 7
    1 / -0

    Sum  of first n terms of the series $$\frac{1}{2} + \frac{3}{4} + \frac{7}{8} + \frac{{15}}{{16}} + ....$$ is equal to 

  • Question 8
    1 / -0

    If $${ S }_{ n }=\overset { n }{ \underset { r=1 }{ \Sigma  }  } { t }_{ r }=\dfrac { 1 }{ 6 } n\left( 2{ n }^{ 2 }+9n+13 \right) $$, then $$\overset { n }{ \underset { r=1 }{ \Sigma  }  } \sqrt { { t }_{ r } } $$ equals ?

  • Question 9
    1 / -0

    The number of zeroes, at the end of $$50!$$, is

  • Question 10
    1 / -0

    The sum of the series $$1+2(1+1/n)+3(1+1/n)^2+....\infty$$ is given by?

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now