Self Studies

Sequences and Series Test - 41

Result Self Studies

Sequences and Series Test - 41
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the series $$1^{3}+3^{3}+5^{3}+....$$ upto $$20$$ terms is
    Solution

  • Question 2
    1 / -0
    The $$nth$$ term of the series $$4, 14, 30, 52, 80, 114, ...$$ is
    Solution

  • Question 3
    1 / -0
    The sum of $$(n+1)$$ terms of $$\frac { 1 }{ 1 } +\frac { 1 }{ 1+2 } +\frac { 1 }{ 1+2+3 } +.......is$$
    Solution
    $$ \dfrac{1}{1} + \dfrac{1}{1+2}+\dfrac{1}{1+2+3}+...+\dfrac{1}{1+2+...+n(n+1)}$$
    $$ \dfrac{1}{1}+\dfrac{1}{3}+\dfrac{1}{6}+...+\dfrac{1}{n+1}$$
    we find 
    $$ 1^{st}$$ term = $$ \dfrac{2}{1}-\dfrac{2}{2} = \dfrac{1}{1}$$ 
    $$ 2^{nd}$$ term = $$ \dfrac{2}{2}-\dfrac{2}{3} = \dfrac{1}{3}$$
    $$ 3^{rd}$$ term = $$ \dfrac{2}{3}-\dfrac{2}{4} = \dfrac{1}{6}$$
    and so on
    $$ n^{m}$$ term $$= \dfrac{2}{n}-\dfrac{2}{n+1}$$
    $$ (n+1)^{m}$$ term $$ = \dfrac{2}{n+1}-\dfrac{2}{n+2}$$
    Now finding the sum of 4 terms;
    $$ \dfrac{2}{1}-\dfrac{2}{2}+\dfrac{2}{2}-\dfrac{2}{3}+\dfrac{2}{3}-\dfrac{2}{4}+\dfrac{2}{4}-\dfrac{2}{5}$$
    we get, $$ \dfrac{2}{1} -\dfrac{2}{5}$$
    So finding the sum of all $$ n+1 $$ terms
    we get, $$ \dfrac{2}{1}-\dfrac{2}{n+2}= 2-\dfrac{2}{n+1}$$
    $$ \Rightarrow \dfrac{2(n+1)-2}{n+1}$$
    $$ \Rightarrow \dfrac{2n+2-2}{n+1}$$
    $$ \Rightarrow \dfrac{2n}{n+1}$$
    Hence, option (b) is correct.

  • Question 4
    1 / -0
    The three digits in 10! are:
    Solution
    As we know that $$10!=1\times 2\times 3\times 4\times 5\times 6\times 7\times 8\times 9\times 10$$
    $$10!=10^2(3\times 4\times 6\times 7\times 8\times 9)$$
    $$10!=10^2(3^4\times 2^6\times 7)$$
    $$10!=10^2(81\times 64\times 7)$$
    The last three digit in $$10!$$ is $$800$$
    The correct option is A.

  • Question 5
    1 / -0
    The sum of the series $$\dfrac {5}{1 \cdot 2 \cdot 3}+\dfrac {7}{3 \cdot 4 \cdot 5}+\dfrac {9}{5 \cdot 6 \cdot 7}+....$$ is
    Solution

  • Question 6
    1 / -0
    If the sum of the series $$1+\dfrac{3}{x}+\dfrac{9}{x^{2}}+\dfrac{27}{x^{3}}+....$$ to $$\infty$$ is a finite number then 
    Solution

    Series: $$1+\dfrac{3}{{x}^{1}}+\dfrac{9}{{x}^{2}}+\dfrac{27}{{x}^{3}}+……\infty $$

    This is a $$G.P$$

    With $$Q  A=1$$

    $$r=\dfrac{3}{x}$$

    $${ s }_{ n }=\dfrac { A }{ 1-r } =\dfrac { 1 }{ 1-\dfrac { 3 }{ x }  } \quad \left\{ \because r<1 \right\} $$

    $${s}_{n}=\dfrac{1\left(x\right)}{x-3}$$...... 1

    Also  $${s}_{n}=\dfrac{A}{r-1}=\dfrac{1}{3.1}=\dfrac{x}{3-x}$$......2

    $$\left\{ \because r\quad >\quad 1 \right\} $$

    From $$1$$ and $$2$$

    We infer:

    $${s}_{n}=\dfrac{1\left(-x\right)}{x-3}$$ is true for

    $$\left\{ 3\quad <\quad x \right\}$$

    And

    $${s}_{n}=\dfrac{x}{3-x}$$ is true then

    $$\left\{ x\quad <\quad 3 \right\}$$

    Option $$x\left\{ x<-3\& x>3 \right\} $$

  • Question 7
    1 / -0
    The value of $$\sum_{n=1}^{\infty}\dfrac{1}{(3n-2)(3n+1)}$$ is equal to $$\dfrac{p}{q}$$, where $$p$$ and $$q$$ are relatively prime natural numbers. Then the value of $$(p^2+q^2)$$ is equal to
    Solution
    Given, $$\displaystyle S=\sum_{n=1}^{\infty }\frac{1}{(3n-2)(3n+1)}= \frac{1}{3}\sum_{n=1}^{\infty }[\frac{1}{3n-2}-\frac{1}{3n+1}]$$
    $$S=\dfrac{1}{3}[(1-\dfrac{1}{4})+(\dfrac{1}{4}-\dfrac{1}{7})+(\dfrac{1}{7}-\dfrac{1}{10})+....]$$
    $$S= \dfrac{1}{3}(1-0)= \dfrac{1}{3}$$
    Comparing with $$S= \dfrac{p}{q}\Rightarrow p=1\, q=3$$
    $$p^{2}+q^{2}=1^{2}+(3)^{2}=10$$
    $$\therefore $$ Option C is correct

  • Question 8
    1 / -0
    If $$p:q:r=1:2:3\;then$$ $$\sqrt {5{p^2} + {q^2} + {r^2}} $$ is equal to: 
    Solution
    Consider the problem

    Given, $$p:q:r=1:2:3$$

    Therefore, $$\frac{p}{1} = \frac{q}{2} = \frac{r}{4} = k$$  (let)

    So, $$p = k,q = 2k,r = 4k$$

    Therefore,

    $$\begin{array}{l} \sqrt { 5{ p^{ 2 } }+{ q^{ 2 } }+{ r^{ 2 } } }  \\ =\sqrt { 5{ k^{ 2 } }+4{ k^{ 2 } }+16{ k^{ 2 } } }  \\ =\sqrt { 25{ k^{ 2 } } }  \\ 5k=5p \end{array}$$

    Hence, Option $$B$$ is the correct answer which is $$5p$$
  • Question 9
    1 / -0
    The sum $$1 + 3 + 7 + 15 + 31 +  \ldots $$ to $$n$$ term is 
    Solution
    Given series is 1+3+5+7 so on upto n
    nth term of this series is $${2}^{n}-1$$
    so,this series can be expressed as ({2}^{1}-1)+({2}^{2}-1)+({2}^{3}-1)so on upto ({2}^{n}-1)
    $$\rightarrow({1}^{1}+{2}^{2}+{2}^{3}+---{2}^{n})-n$$
    $$\rightarrow\dfrac{2({2}^{n}-1)}{2-1}-n$$
    $$\rightarrow{2}^{n+1}-2-n$$

  • Question 10
    1 / -0
    Replace the question mark (?) with the correct option.

    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now