Self Studies

Sequences and Series Test - 42

Result Self Studies

Sequences and Series Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Find: $$6,25,62,123,(?),341$$
    Solution
    $$6=2^{3}-2=6$$
    $$25=3^{3}-2=25$$
    $$62=4^{3}-2=62$$
    $$123=5^{3}-2=123$$
    $$214=6^{3}-2=214$$
    $$341=7^3-2=341$$

    Missing term is $$214$$
  • Question 2
    1 / -0
    Find the missing factor among the given figure ?

    Solution

  • Question 3
    1 / -0
    The numbers $${\log _{180}}12,{\log _{2160}}12,{\log _{25920}}12$$ are in
    Solution

  • Question 4
    1 / -0
    If $$[x]$$ denotes the greates integer $$\le x$$, then $$\left[\dfrac{2}{3} \right] + \left[\dfrac{2}{3} + \dfrac{1}{99} \right] + \left[\dfrac{2}{3} + \dfrac{2}{99} \right] + .... + \left[\dfrac{2}{3} + \dfrac{98}{99} \right] =$$
    Solution
    $$\left [ \cfrac{2}{3} \right ]=0$$
    $$\left [ \cfrac{2}{3}+\cfrac{1}{99} \right ]=0$$
    $$\left [ \cfrac{2}{3}+\cfrac{2}{99} \right ]=0$$
    $$...$$
    $$...$$
    $$\left [ \cfrac{2}{3}+\cfrac{33}{99} \right ]=\left [ \cfrac{2}{3}+\cfrac{1}{3} \right ]=\left [ 1 \right ]=1$$
    $$\left [ \cfrac{2}{3}+\cfrac{34}{99} \right ]=\left [ 1+\cfrac{1}{99} \right ]=1$$
    $$\left [ \cfrac{2}{3}+\cfrac{98}{99} \right ]=\left [ 1+\cfrac{65}{99} \right ]=1$$

    So, the sum is
    $$1+1+1+......... 66 $$ times
    $$=66$$

  • Question 5
    1 / -0
    $$\sum _{ r=0 }^{ n }{ \dfrac { { 2 }^{ r+2 }\cdot ^{ n }C_{ r } }{ (r+1)(r+2) }  } $$ is equal to 
  • Question 6
    1 / -0
    If $$S={1}^{2}-{2}^{2}+{3}^{2}-{4}^{2}....$$ upto $$n$$ terms and $$n$$ is even, then $$S$$ equals _____
    Solution
    $$S=1^{2}-2^{2}+3^{2}-4^{2}.........$$ upto $$n$$ term
    $$=(1-2)(1+2)+(3-4)(3+4)+......+(n-1-n)(n-1+n)$$
    $$=-(1+2+3+4+.....+n)$$
    $$S=\dfrac{-n(n+1)}{2}$$
  • Question 7
    1 / -0
    The value of $$\sum\limits_{n = 2}^\infty  {\left( {1 - \frac{1}{{{n^2}}}} \right)} $$ equals 
  • Question 8
    1 / -0
    If $$x$$ and $$y$$ are the number of possibilities that $$A$$ can assume such that the unit digit of A and $$A^3$$ are same and the unit digit of $$A^2$$ and $$A^3$$ are same respectively ,then the value of $$x-y$$ is (where $$A$$ is a single digit number)
    Solution
    Here, according to the question
    if $$A=1$$, then $${ A }^{ 3 }={ 1 }$$, 
    We see that unit digit number of $$A$$ and $${ A }^{ 3 }$$ are same.
    for, $$A=2\Rightarrow { A }^{ 3 }=8,$$, unit digits are not same
          $$A=3\Rightarrow { A }^{ 3 }=27,$$ unit digits are not same
          $$A=4\Rightarrow { A }^{ 3 }=64,$$ unit digits are same
          $$A=5\Rightarrow { A }^{ 3 }=125,$$ unit digits are same
          $$A=6\Rightarrow { A }^{ 3 }=216,$$ unit digits are not same
          $$A=7\Rightarrow { A }^{ 3 }=343,$$ unit digits are not same
          $$A=8\Rightarrow { A }^{ 3 }=512,$$ unit digits are not same
          $$A=8\Rightarrow { A }^{ 3 }=512,$$ unit digits are same
    So, there are five possible solutions where unit digits of $$A$$ and $${ A }^{ 3 }$$ are same.
          $$\therefore x=5$$
    Again, if we take $$A=1,{ A }^{ 2 }=1,{ A }^{ 3 }={ 1 }$$, unit digits are same
      $$A=2\Rightarrow { A }^{ 2 }=4,{ A }^{ 3 }=8,$$ unit digits are not same
      $$A=3\Rightarrow { A }^{ 2 }=9,{ A }^{ 3 }=27,$$ unit digits are not same
      $$A=4\Rightarrow { A }^{ 2 }=16,{ A }^{ 3 }=64,$$ unit digits are not same
      $$A=5\Rightarrow { A }^{ 2 }=25,{ A }^{ 3 }=125,$$ unit digits are same
      $$A=6\Rightarrow { A }^{ 2 }=36,{ A }^{ 3 }=216,$$ unit digits are same
      $$A=7\Rightarrow { A }^{ 2 }=49,{ A }^{ 3 }=343,$$ unit digits are not same
      $$A=8\Rightarrow { A }^{ 2 }=64,{ A }^{ 3 }=512,$$ unit digits are not same
      $$A=9\Rightarrow { A }^{ 2 }=81,{ A }^{ 3 }=729$$ unit digits are not same
    Here, we can see that there are three possible solutions where unit digits of $${ A }^{ 2 },{ A }^{ 3 }$$ are same.
    So, $$y=3$$
    Hence, $$x-y=5-3=2.$$
  • Question 9
    1 / -0
    $$\begin{bmatrix} 12 & 47 & 21 \\ 10 & 52 & 4 \\ 64 & ? & 24 \end{bmatrix}$$ 
    Solution
    $$\begin{bmatrix} 12 & 47 & 21\\ 10 & 52 & 4\\ 64 & ? & 24\end{bmatrix}$$
    We can see that dividing third number in each row with second digit of middle number and multiplying with first digit gives first member.
    Similarly, out of $$4$$ options, dividing $$24$$ by $$3$$ and multiplying by $$8$$ gives $$64$$.
    $$\Rightarrow$$ Option $$(B)$$.

  • Question 10
    1 / -0
    If $$(1+ax)^{n }=1+8x+24x^{2}+...;$$ then $$\cfrac {a-n}{a+n}$$ is equal to
    Solution
    $$(1+ax)^{ n }=1+n\left( ax \right) +^{ n }{ C }_{ 2 }{ \left( ax \right)  }^{ 2 }+^{ n }{ C }_{ 3 }{ \left( ax \right)  }^{ 3 }....$$
    According to question
    $$(1+ax)^{ n }=1+8x+24x^{ 2 }+...$$
    $$\Rightarrow an=8$$
    $${ a }^{ 2 }=\cfrac { (n)(n-1) }{ 2 } =24$$
    $$\Rightarrow { a }^{ 2 }\left( n \right) \left( n-1 \right) =48$$
    $$\Rightarrow a\left( n-1 \right) =6$$
    $$\Rightarrow \cfrac { n }{ n-1 } =\cfrac { 8 }{ 6 } =\cfrac { 4 }{ 3 } $$
    $$\Rightarrow n=4,\Rightarrow a=2$$
    $$\therefore \cfrac { a-n }{ a+n } =\cfrac { 2-4 }{ 2+4 } =\cfrac { -2 }{ 6 } =\cfrac { -1 }{ 3 } $$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now