Self Studies

Sequences and Series Test - 43

Result Self Studies

Sequences and Series Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    In a triangle $$ABC$$, 
    $$acos^2(\frac{C}{2})+c\;cos^2(\frac{A}{2})=\dfrac{3b}{2}$$, then the sides $$a,b,c$$ 
    Solution
    $$a\cos^{2}\left(\dfrac{C}{2}\right)+C\cos^{2}\left(\dfrac{A}{2}\right)=\dfrac{3b}{2}$$

    $$a\left[\dfrac{1+\cos C}{2}\right]+C\left[\dfrac{1+\cos A}{2}\right]=\dfrac{3b}{2}$$

    $$\dfrac{a}{2}+\dfrac{c}{2}+\dfrac{1}{2}\left[a\cos C+C \cos A\right]=\dfrac{3b}{2}$$

    $$a+c+a\cos C+ c \cos A=3b$$

    $$2R\sin A+2R\sin C+2R\sin A\cos C+2R\sin C\cos A =3(2R)(\sin B)$$

    $$\sin A+\sin C+\sin (A+C)=3\sin (B)$$

    $$A+B+C=\pi\Rightarrow \sin(A+C)=\sin B$$

    $$\sin A+\sin C+\sin B=3\sin (B)$$

    $$\sin A+\sin C=2\sin B$$

    $$2R\sin A+2R\sin C=2R\sin B$$

    $$a+c=2b$$

    $$\therefore a,b,c$$ are an $$A.P$$
  • Question 2
    1 / -0
    Let $$N=\{1,2,3,.......,10\},$$ then sum of product of number taken two at a time from the set $$N$$ is 
    Solution

  • Question 3
    1 / -0
    The sum $$\sum _{ i=0 }^{ m }{ \left( \begin{matrix} 10 \\ i \end{matrix} \right) \left( \begin{matrix} 20 \\ m-i \end{matrix} \right)  }$$ (where $$\left( \begin{matrix} p \\ q \end{matrix} \right)=0$$ if $$p<q$$) is maximum where $$m$$ is
    Solution

  • Question 4
    1 / -0
    $$1.3.4+2.5.8+3.6.9+$$ upto $$n$$ terms is equal to ________ .
    Solution

  • Question 5
    1 / -0
    If $$64a^2+36b^2=400, ab=4 $$ , then $$8a+6b$$ is: 
    Solution
    Given  $$64a^2+36b^2=400,\quad ab=4$$
    We know 
    $$(a+b)^2=a^2+b^2+2ab$$
    therefore,
    $$(8a+6b)^2=(8a)^2+(6b)^2+2(8a)(6a)$$
                        $$=64a^2+36b^2+96ab$$
                        $$=400+96\times4$$
                        $$=400+384$$
    $$(8a+6b)^2=784$$
    $$8a+6b=\sqrt{784}$$
    $$8a+6b=28$$
  • Question 6
    1 / -0
    The sum of the series  
    $$1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+...+1000.2^{999}$$ is
    Solution
    $$ S = 1+2.2+3.2^{2}+4.2^{3}+5.2^{4}+..... +1000.2^{999}$$ __ (1)
    Multiply with '2' on both sides
    $$ 2S = 1.2+2.2^{2}+3.2^{2}+4.2^{4}+5.2^{5}+... +999.2^{999}+1000.2^{1000}$$ __ (2)
    subtracting equation (1) & (2)
    $$ (S-2S) =  [ 1+(2.2-1.2)+(3.2^{2}-2.2^{2})+(4.2^{3}-3.2^{3})+(5.2^{4}-4.2^{4})+$$ ...
    $$+(1000.2^{999}-999.2^{999})-1000.2^{1000}$$
    $$(S-2S) = 1+1.2+1.2^{2}+1.2^{3}+1.2^{4}+.... +1.2^{999}-1000.2^{1000}$$ 
    $$-S = 1+(2+2^{2}+2^{3}+2^{4}+...+2^{999})-1000.2^{1000}$$
    $$ \left [ \because a+ar+ar^{2}+...+ar^{n-1} = \dfrac{a.(r^{n}-1)}{r-1} \right ]$$
    $$ a = 2, r = 2, n = 999 $$
    $$ -S= \dfrac{1+2.(2^{999}-1)}{2-1} - 1000.2^{1000}$$
    $$ -S = 1+2^{1000}-2-1000.2^{1000}$$
    $$ -S = -1+2^{1000}(1-1000)$$
    $$ -S = -1-999.2^{1000}$$
    $$ S = 999.2^{1000}+1$$
  • Question 7
    1 / -0
    The sum of the series $$10.^{n}C_{0}+10^{2}.^{n}C_{1}+10^{3}.^{n}C_{2}+...10^{n+1}.^{n}C_{n}$$ is 
    Solution
    $$ \rightarrow 10(^{n}C_{0}+10.^{n}C_{1}+...+10^{n}$$ $$^{n}C_{n})$$
    $$ = 10\displaystyle(\sum_{r=1}^{n}$$ $$ ^{n}C_{r}(10)^{r}(1)^{n-r} )$$
    $$ = 10(1+10)^{n} = 10.11^{n} = (B)$$
  • Question 8
    1 / -0
    If $$| x| < 1$$ , then the sum of series $$ 1+ 2x + 3x^2 + 4x^3 + .........\infty$$ will be
    Solution
    Let  $$S=1+2x+3{x}^{2}+......\infty$$    $$\dots(1)$$

    multiply by $$x$$ on both sides

    $${x}{S}=x+2{x}^{2}+3{x}^{3}+.....\infty$$     $$\dots(2)$$

    Subtract $$(1)$$ from $$(2)$$

      $$S=1+2x+3{x}^{2}+......\infty$$

      $${x}{S}=x+2{x}^{2}+3{x}^{3}+.....\infty$$
    -         -       -         -
    --------------------------------------------------------
    $$S(1-x)=1+x+{x}^{2}+{x}^{3}+.....\infty$$

    $$S(1-x)=\cfrac{1}{1-x}$$       [sum of infinte G.P $$S_{\infty}=\dfrac{1}{1-r}]$$

    $$S=\cfrac{1}{(1-x)^{2}}$$
  • Question 9
    1 / -0
    There is a defined relationship between the pair of figure on either side of : :. Identify the relationship of the given pair and find be the missing figure.

    Solution

  • Question 10
    1 / -0
    $$\displaystyle\sum^n_{r=1}\displaystyle\sum^{r-1}_{p=0}$$ $$^{n}C_r\cdot {^{r}C_p}\cdot 2^p$$ is equal to?
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now