Self Studies

Sequences and Series Test - 50

Result Self Studies

Sequences and Series Test - 50
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The sum of the series $$1+\dfrac{\log_e x}{1!}+\dfrac{(\log_e x)^2}{2!}+........$$ is 
    Solution
    We've,
    $$1+\dfrac{\log_e x}{1!}+\dfrac{(\log_e x)^2}{2!}+........$$
    $$=e^{\log_ex}$$[ Since $$e^x=1+\dfrac{x}{1!}+\dfrac{x^2}{2!}+........$$]
    $$=x$$.
  • Question 2
    1 / -0
    If x<1, then $$\displaystyle \frac { 1 }{ 1+x } +\frac { 2x }{ 1+{ x }^{ 2 } } +\frac { { 4x }^{ 3 } }{ 1+{ x }^{ 4 } } +.........\infty =$$
    Solution

  • Question 3
    1 / -0
    Find the sum of 
    $$1+\frac { 1 }{ 4 } +\frac { 1.3 }{ 4.8 } +\frac { 1.3.5 }{ 4.8.12 } +...\infty $$.
    Solution
    solution
    $$1+\frac{1}{4}+\frac{1 \cdot 3}{4 \cdot 8}+\frac{1 \cdot 3 \cdot 5}{4 \cdot 8 \cdot 12}+\cdots \cdot$$

    $$(1+x)^{n}=1+n x+\frac{n(n-1)}{2 !} x^{2}+ \cdots$$

    ' $$n$$ ' can be fractional, negative also.

    $$n x=\frac{1}{4} \quad \frac{n(n-1)}{2} x^{2}=\frac{3}{32}-(11) \\$$

    $$n^{2} x^{2}=\frac{1}{16} \\$$

    $$x^{2}=\frac{1}{16 n^{2}}-(1)$$

    Put value of $$x^{2}$$ from equation (1) in equation (11)

    $$\frac{n(n-1)}{2} \frac{1}{16 n^{2}}=\frac{3}{32} \Rightarrow \frac{n^{2}-n}{n^{2}}=3$$

    $$\Rightarrow n^{2}-n=3 n^{2} \Rightarrow 2 n^{2}+n=0$$

    $$\Rightarrow n(2 n+1)=0$$

    $$n=0$$ which is not possible here so $$n=-\frac{1}{2} \quad x=-\frac{1}{2}$$

    $$=\frac{1}{\sqrt{2}}$$

    Answer : option $$(D)$$


  • Question 4
    1 / -0
    The sum of the series 1+2(1 +1/n)+ 3$${ \left( 1+1/n \right)  }^{ 2 }+....\infty \quad is\quad given\quad by$$
    Solution
    Given,

    $$S_m=1+2\left ( 1+\dfrac{1}{n} \right )+.........+\infty $$

    $$\Rightarrow S_m\left ( 1+\dfrac{1}{n} \right )=\left ( 1+\dfrac{1}{n} \right )+2\left ( 1+\dfrac{1}{n} \right )^2+.....+\infty $$

    $$S_m-S_m\left ( 1+\dfrac{1}{n} \right )=-\dfrac{S_m}{n}$$

    $$-\dfrac{S_m}{n}=1+\left ( 1+\dfrac{1}{n} \right )+\left ( 1+\dfrac{1}{n} \right )^2+.........+\infty $$

    $$-\dfrac{S_m}{n}=\dfrac {1}{1-\left ( 1+\dfrac{1}{n} \right )}=-n$$

    $$S_m=n^2$$
  • Question 5
    1 / -0
    The $${ 7 }^{ th }$$ term of the series$$1+\dfrac { 1 }{ \left( 1+3 \right)  } { \left( 1+2 \right)  }^{ 2 }\dfrac { 1 }{ \left( 1+3+5 \right)  } { \left( 1+2+3 \right)  }^{ 2 }+.....,$$ is equal to ________.
    Solution

  • Question 6
    1 / -0
    The sum of the first n terms of the series $${ 1 }^{ 2 }+2.{ 2 }^{ 2 }+{ 3 }^{ 2 }+2.{ 4 }^{ 2 }+{ 5 }^{ 2 }+2.{ 6 }^{ 2 }+...$$ is $$\dfrac { n{ \left( n+1 \right)  }^{ 2 } }{ 2 } $$ when n is even. When n is odd the sum is
    Solution

  • Question 7
    1 / -0
    The sum of the series $$ 1 + \frac { 1 + 2 } { 2 } + \frac { 1 + 2 + 3 } { 3 } + \ldots $$ to n terms is
    Solution

  • Question 8
    1 / -0
    If $$\sum _{ k=2 }^{ n }{ cos{  }^{ -1 }(\frac { 1+\sqrt { (k-1)(k+2)(k+1)k }  }{ k(k+1) }  } )=\frac { 120\pi  }{ \lambda  }$$,then
  • Question 9
    1 / -0
    Use geometric series to express $$0.555...=0.\overline 5$$ as a rational number.
    Solution
    $$0.\overline 5=0.5555...$$ 

    $$0.\overline 5=0.5 +0.05 +0.005 +... \infty$$

    $$0.\overline 5=\dfrac{5}{10}+\dfrac{5}{10^2}+\dfrac{5}{10^3}+... \infty$$

    This is an infinite $$G.P$$ with $$a=\dfrac {5}{10}$$ and $$r=\dfrac {1}{10}$$

    $$0.\overline 5=\dfrac{\left(\dfrac {5}{10}\right)}{1-\left(\dfrac {1}{10}\right)}=\dfrac{5}{9}$$
  • Question 10
    1 / -0
    If $$L=\sum _{ r=7 }^{ 2400 }{ \log _{ 7 }{ \left( \frac { r+1 }{ r }  \right)  }  } ,M=\prod _{ r=2 }^{ 1023 }{ \log _{ r }{ (r+1) }  } $$ and $$N=\sum _{ r=2 }^{ 2011 }{ \left( \frac { 1 }{ \log _{ r }{ p }  }  \right)  } $$ where p=$$(1\cdot 2\cdot 3\cdot 4\cdot 5\cdot ...........\cdot 2011)$$, then
    Solution

    $$\text { Solve: } \\$$

    $$\text { Given, } \\$$

    $$\qquad L=\sum_{r=7}^{2400} \log _{7}\left(\frac{r+1}{r}\right) \\$$

    $$\left.\Rightarrow L=\log _{7}\left(\frac{8}{7}\right)+\log _{7}\left(\frac{9}{8}\right)+\log _{7}\left(\frac{10}{9}\right)+-\cdots+\log _{7} (\frac{2401}{2400}\right)\\$$

    $$\text { We know that } \\$$

    $$\qquad \log a+\log b=\log a b$$

    $$\Rightarrow L=\log _{7}\left(\frac{8}{7}\right) \times\left(\frac{9}{8}\right) \times\left(\frac{10}{9}\right) \times \ldots \times\left(\frac{401}{2400}\right)$$

    $$\Rightarrow L=\log _{7}\left(\frac{240}{7}\right)=\log _{7} 7^{3}$$

    $$\Rightarrow L=3 \quad-(i) \quad\left\{\log _a {a}^{x}=x\right.$$

    $$M =\pi_{r=2}^{1023} \log _{r}(r+1) \\$$

     $$\Rightarrow  M=\log _{2}(3) \cdot \log _{3} 4 \cdot \log _{4} 5 . . \log _{1023} 1024 \\$$

     $$\Rightarrow \quad M=\left(\frac{\log 3}{\log 2}\right) \cdot\left(\frac{\log 4}{\log 3}\right) . \cdots\left(\frac{\log 1024}{\log 1023}\right) $$

    $$\left\{\log _{a} b=\frac{\log {b}}{\log a}\right\}$$

    $$\Rightarrow M =\frac{\log 1024}{\log 2}=\log _{2} 2^{10} \\ $$

    $$\Rightarrow M=10 \quad-(i i) $$

    Now, $$N=\sum_{r=2}^{20 \pi}\left(\frac{1}{\log _{r}{p}}\right)$$

    Where, $$P=(1.2 .3 .4 .5 \ldots . .2011)$$

    $$\Rightarrow P=2011 !$$

    $$\Rightarrow N=\log _{p}^{2}+\log _{p}^{3}+\log _{p}^{4}+\ldots+\log _{p}^{2011}$$

    $$\Rightarrow N=\log _{p}(2 \cdot 3 \cdot 4 \cdot \ldots 2011)=\log _{p}(2011) !$$

    $$\Rightarrow N=\log _{p}^{p}=1 \quad-(i i i)$$

    on adding equation (i) and equation (ii)

    we get.

    $$L+M=3+10=13$$

    from eqn. (i), (i) and (iii) we get

    $$L=3, M=10$$ and $$N=1$$

    $$\Rightarrow \quad M^{2}+N^{2}=100+1=101$$

    and $$\quad$$ LMN $$=3 \cdot 10 \cdot 1=30$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now