$$\text { Solve: } \\$$
$$\text { Given, } \\$$
$$\qquad L=\sum_{r=7}^{2400} \log _{7}\left(\frac{r+1}{r}\right) \\$$
$$\left.\Rightarrow L=\log _{7}\left(\frac{8}{7}\right)+\log _{7}\left(\frac{9}{8}\right)+\log _{7}\left(\frac{10}{9}\right)+-\cdots+\log _{7} (\frac{2401}{2400}\right)\\$$
$$\text { We know that } \\$$
$$\qquad \log a+\log b=\log a b$$
$$\Rightarrow L=\log _{7}\left(\frac{8}{7}\right) \times\left(\frac{9}{8}\right) \times\left(\frac{10}{9}\right) \times \ldots \times\left(\frac{401}{2400}\right)$$
$$\Rightarrow L=\log _{7}\left(\frac{240}{7}\right)=\log _{7} 7^{3}$$
$$\Rightarrow L=3 \quad-(i) \quad\left\{\log _a {a}^{x}=x\right.$$
$$M =\pi_{r=2}^{1023} \log _{r}(r+1) \\$$
$$\Rightarrow M=\log _{2}(3) \cdot \log _{3} 4 \cdot \log _{4} 5 . . \log _{1023} 1024 \\$$
$$\Rightarrow \quad M=\left(\frac{\log 3}{\log 2}\right) \cdot\left(\frac{\log 4}{\log 3}\right) . \cdots\left(\frac{\log 1024}{\log 1023}\right) $$
$$\left\{\log _{a} b=\frac{\log {b}}{\log a}\right\}$$
$$\Rightarrow M =\frac{\log 1024}{\log 2}=\log _{2} 2^{10} \\ $$
$$\Rightarrow M=10 \quad-(i i) $$
Now, $$N=\sum_{r=2}^{20 \pi}\left(\frac{1}{\log _{r}{p}}\right)$$
Where, $$P=(1.2 .3 .4 .5 \ldots . .2011)$$
$$\Rightarrow P=2011 !$$
$$\Rightarrow N=\log _{p}^{2}+\log _{p}^{3}+\log _{p}^{4}+\ldots+\log _{p}^{2011}$$
$$\Rightarrow N=\log _{p}(2 \cdot 3 \cdot 4 \cdot \ldots 2011)=\log _{p}(2011) !$$
$$\Rightarrow N=\log _{p}^{p}=1 \quad-(i i i)$$
on adding equation (i) and equation (ii)
we get.
$$L+M=3+10=13$$
from eqn. (i), (i) and (iii) we get
$$L=3, M=10$$ and $$N=1$$
$$\Rightarrow \quad M^{2}+N^{2}=100+1=101$$
and $$\quad$$ LMN $$=3 \cdot 10 \cdot 1=30$$