Self Studies

Sequences and Series Test - 51

Result Self Studies

Sequences and Series Test - 51
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Sum the following series to n terms: $$1+3+6+10+15+...$$
    Solution
    Gives series $$1+3+6+10+15+.........$$

    The sequence of the difference between the successive terms of the series is $$2, 3, 4, 5 +......$$

    Clearly it is an $$A.P$$ with common difference $$1$$

    Let $$T_{n}$$ be the $$n^{th}$$ term & $$S_{n}$$ denote the sum of $$n$$ terms of the given series

    Then $$S_{n}=1+3+6+10+15+.....+T_{n-1}+T_{n} ........ (1)$$

    Also $$S_{n}1+3+6+10+....... T_{n-1}+T_{n} ...... (2)$$

    Subtracting $$(2)$$ from $$(1)$$, we get

    $$0=1+[2+3+4+5+..... T_{n}+T_{n-1}]-T_{n}$$

    $$T_{n}=1+\dfrac{(n-1)}{2}[2\times 2+(n-1-1)\times 1]$$

    $$T_{n}=1+\dfrac{(n-1)}{2}(n+2)=\dfrac{2+n^{2}+2n-n-2}{2}$$

    $$T_{n}=\dfrac{n^{2}+n}{2}$$

    $$S_{n}=\displaystyle\sum_{k=1}^{n}T_{k}=\sum_{k=1}^{n}\left(\dfrac{k^{2}+k}{2}\right)=\dfrac{1}{2}\sum_{k=1}^{n}k^{2}+\dfrac{1}{2}\sum_{k=1}^{n}k$$

    $$S_{n}=\dfrac{1}{2}\left[\dfrac{n(n+1)(2n+1)}{6}+\dfrac{n(n+1)}{2}\right]$$

    $$S_{n}=\dfrac{1}{2}\left[n(n+1)\left[\dfrac{2n+1+3}{6}\right]\right]$$

    $$S_{n}=\dfrac{n}{6}(n+1)(n+2)$$
  • Question 2
    1 / -0
    Find the sum of the following series to n terms:
    $$1\times 2+2\times 3+3\times 4+4\times 5+...$$
    Solution
    Let $$T_n$$ be the $$n^{th}$$ term of the given series, Then

    $$T_n=(n^{th}\ term\ of\ 1,2,3....)\times (n^{th}\ term\ of\ 2,3,4....)$$

    $$=[1+(n-1)\times 1]. [2+(n-1)\times 1]$$

    $$=[1+n-1][2+n-1]$$

    $$=n(n+1)=n^2 +n$$

    Let $$S_n$$ denotes sum of $$n$$ term of the given series

    $$S_n= \displaystyle \sum_{n=1}^{n}T_n =\displaystyle \sum_{n=1}^{n} (n^2 +n)=\displaystyle \sum_{n=1}^{n}n^2 +\displaystyle \sum_{n=1}^{n}n$$

    $$=\dfrac {n(n+1)(2n+1)}{6}+\dfrac {n(n+1)}{2}=\dfrac {n(n+1) (2n+1)+3n(n+1)}{6}$$

    $$=\dfrac {n(n+1)(2n+4)}{6}=\dfrac {n(n+1)\times 2(n+2)}{6}$$

    $$S_n =\dfrac {n}{3}(n+1)(n+2)$$
  • Question 3
    1 / -0
    Find the sum of the following series to n terms:
    $$1+(1+2)+(1+2+3)+(1+2+3+4)+...$$
    Solution
    Let $$T_n$$ be the $$n^{th}$$ term of the given series, 

    Then,

    $$T_n =1+2+3+.....+n$$

    $$=\dfrac {n}{2}[2\times 1+(n-1)\times 1]$$

    $$=\dfrac {n}{2} [2+n-1]=\dfrac {n}{2} (n+1)$$

    $$=\dfrac {n^2}{2}+\dfrac {n}{2}$$

    Let $$S_n$$ denoted sum of $$n$$ terms of the given series

    $$S_n =\displaystyle \sum_{K=1}^nT_K=\displaystyle \sum_{K=1}^n \left [\dfrac {K^2}{2}+K/2\right] $$

    $$S_n =\dfrac {1}{2} \displaystyle \sum_{K=1}^nK^2 +\dfrac {1}{2}\displaystyle \sum_{K=1}^nK$$

    $$S_n=\dfrac {1}{2} \left [\dfrac {n(n+1) (2n+1)}{6} \right] +\dfrac {1}{2} \left [\dfrac {n(n+1)}{2}\right]$$

    $$S_n=\dfrac {n(n+1)(2n+1)+3n(n+1)}{12}$$

    $$S_n =\dfrac {n(n+1)[2n+4]}{12}$$

    $$S_n=\dfrac {n(n+1)}{12}\times 2(n+2)$$

    $$S_n=\dfrac {n}{6}(n+1)(n+2)$$
  • Question 4
    1 / -0
    The next number in the pattern 62, 37, 12 ____ is
    Solution
    Option (b) is correct; here, the given series has a common difference of +25.
    $$\begin{array}{l}\Rightarrow-62+25=-37,-37+25=-12 \\\therefore-12+25=13\end{array}$$
  • Question 5
    1 / -0
    If AM of two numbers a and 17 is 15. Then a is ___
    Solution

  • Question 6
    1 / -0
    Arithmetic mean of two numbers a+d and a-d is 
    Solution

  • Question 7
    1 / -0
    Find the sum of Arithmetic means of $$3 , 9$$ and $$12 , 8$$.

    Solution

  • Question 8
    1 / -0
    Insert an arithmetic mean between $$7$$ and $$21$$
  • Question 9
    1 / -0
    The arithmetic mean of $$4$$ and $$14$$ is 
    Solution

  • Question 10
    1 / -0
    Sum of the series $$S=1^2-2^2+3^2-4^2+.....-2002^2+2003^2$$ is
    Solution
    $$S = {1}^{2} - {2}^{2} + {3}^{2} - {4}^{2} + ...... - {2002}^{2} + {2003}^{2}$$

    $$\displaystyle \Rightarrow S = \sum_{k = 1}^{2003}{{\left( -1 \right)}^{k + 1}{k}^{2}}$$

    $$\displaystyle \Rightarrow S = \sum_{k = 1}^{1002}{{\left( 2k - 1 \right)}^{2}} - \sum_{k = 1}^{1001}{{\left( 2k \right)}^{2}}$$

    $$\displaystyle \Rightarrow S = {\left[ \left( 2 \times 1002 \right) - 1 \right]}^{2} + \sum_{k = 1}^{1001}{\left[ {\left( 2k \right)}^{2} - {\left( 2k \right)}^{2} - 4k + 1 \right]}$$

    $$\displaystyle \Rightarrow S = {\left( 2003 \right)}^{2} - \sum_{k = 1}^{1001}{\left( 4k - 1 \right)} = {\left( 2003 \right)}^{2} - 4 \times \cfrac{1001 \left( 1001 + 1 \right)}{2} + 1001 = 2007006$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now