Self Studies

Sequences and S...

TIME LEFT -
  • Question 1
    1 / -0

    If $$n$$ is an odd integer greater than or equal to $$1$$, then the value of $$ n^3-(n-1)^3+(n-2)^3-....+(-1)^{n-1}1^3$$, is

  • Question 2
    1 / -0

    If $$ \displaystyle f(r)=1+\frac {1}{2}+\frac {1}{3}+.....+\frac {1}{r}$$ and $$f(0)=0$$, then value of $$ \displaystyle \sum_{r=1}^{n}(2r+1)f(r)$$ is

  • Question 3
    1 / -0

    The sum to $$n$$ terms of the series $$\displaystyle \frac{3}{1^2}+\frac{5}{1^2+2^2}+\frac{7}{1^2+2^2+3^2}+...$$ is

  • Question 4
    1 / -0

    The sum of the first $$n$$ terms of the series $$1^2+2\cdot2^2+3^2+2\cdot4^2+5^2+2\cdot6^2+..... $$ is $$\dfrac{n \left ( n+1\right )^2}{2}$$ when $$n$$ is even. 

    When $$n$$ is odd, then the sum is

  • Question 5
    1 / -0

    $$\displaystyle \frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots.n$$ terms $$=$$

  • Question 6
    1 / -0


    Observe the following lists List I and  List II


    (A) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{n}(\log_{e}a)^{n}}{n!}$$                                     $$(1)\displaystyle \frac{e^{x}-e^{-x}}{2}$$
    (B) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{2n}}{(2n)!}$$                                                $$(2) e^{-ax}$$
    (C) $$\displaystyle \sum_{n=0}^{\infty}\frac{x^{2n+1}}{(2n+1)!}=$$                                    $$(3) a^{x}$$
    (D) $$\displaystyle \sum_{n=0}^{\infty}\frac{(-1)^{n}.(ax)^{n}}{n!}$$                                  $$(4)\displaystyle \frac{a^{x}-a^{-x}}{2}$$
                                                                           $$(5)\displaystyle \frac{e^{x}+e^{-x}}{2}$$
    The correct match of List I to List II is:

  • Question 7
    1 / -0

     Sum  the  series  $$1^3+3^3+5^3+.......... $$  to  $$n$$ terms  is

  • Question 8
    1 / -0

    ABCD is a square of length a, $$a\epsilon N$$, a>1. Let $$L_{1}$$, $$L_{2}$$, $$L_{3}$$,... be points on BC such that $$BL_{1}=L_{1}L_{2}=L_{2}L_{3}=...=1$$ and $$M_{1}$$, $$M_{2}$$, $$M_{3}$$,... be points on CD such that $$CM_{1}=M_{1}M_{2}=M_{2}M_{3}=...=1$$. Then $$\sum_{n=1}^{a-1}\left ( A{L_{n}}^{2}+L_{n}{M_{n}}^{2} \right )$$ is equal to

  • Question 9
    1 / -0

    The sum of n terms of the series $$1 + (1 + a) + (1 + a + a^2) + (1 + a  + a^2 + a^3) + ....$$ is

  • Question 10
    1 / -0

    If $$\displaystyle \sum_{r=1}^{n}t_{r}=\frac {n(n+1)(n+2)(n+3)}{8}$$, then $$\displaystyle \underset{n\rightarrow \infty}{ \lim} \sum_{r=1}^{n}\frac {1}{t_{r}}$$
    is equal to: 

Submit Test
Self Studies
User
Question Analysis
  • Answered - 0

  • Unanswered - 10

  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
Submit Test
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now