Let $${ S }_{ n }=\sum _{ r=1 }^{ n }{ { t }_{ r } } $$
ie, $${ t }_{ n }={ S }_{ n }-{ S }_{ n-1 }=\dfrac { n(n+1)(n+2)(n+3) }{ 8 } -\dfrac { (n-1)n(n+1)(n+2) }{ 8 } $$
$$=\dfrac { n(n+1)(n+2)(n+3-(n-1)) }{ 8 } $$
$$=\dfrac { n(n+1)(n+2) }{ 2 } $$
Let, $$\dfrac { 1 }{ { t }_{ n } } =\dfrac { 2 }{ n(n+1)(n+2) } =\dfrac { A }{ n } +\dfrac { B }{ n+1 } +\dfrac { C }{ n+2 } $$
$$\Rightarrow \dfrac { A }{ n } +\dfrac { B }{ n+1 } +\dfrac { C }{ n+2 } =\dfrac { A(n+1)+Bn }{ n(n+1) } +\dfrac { C }{ n+2 } =\dfrac { ((A+B)n+A)(n+2)+Cn(n+1) }{ n(n+1)(n+2) } $$
$$\Rightarrow \dfrac { (A+B+C){ n }^{ 2 }+(3A+2B+C)n+2A }{ n(n+1)(n+2) } =\dfrac { 2 }{ n(n+1)(n+2) } $$
ie,$$A=1,B=(-2),C=1$$
Therefore, $$ \sum _{ r=1 }^{ n }{ \dfrac { 1 }{ { t }_{ r } } =\sum _{ r=1 }^{ n }{ (\dfrac { 1 }{ n } -\dfrac { 2 }{ n+1 } +\dfrac { 1 }{ n+2 } ) } } =\left (\dfrac { 1 }{ 1 } +\boxed { -\dfrac { 2 }{ 2 } \\ +\dfrac { 1 }{ 2 } } +\boxed { +\dfrac { 1 }{ 3 } \\ -\dfrac { 2 }{ 3 } +\\ +\dfrac { 1 }{ 3 } } +\boxed { +\dfrac { 1 }{ 4 } \\ -\dfrac { 2 }{ 4 } \\ +\dfrac { 1 }{ 4 } } +\boxed { ... } +\boxed { +\dfrac { 1 }{ n } \\ -\dfrac { 2 }{ n } \\ +\dfrac { 1 }{ n } } +\boxed { +\dfrac { 1 }{ n+1 } \\ -\dfrac { 2 }{ n+1 } } +\dfrac { 1 }{ n+2 }\right )$$
$$\Rightarrow \sum _{ r=1 }^{ n }{ \dfrac { 1 }{ { t }_{ r } } } =\dfrac { 1 }{ 2 } -\dfrac { 1 }{ n+1 } +\dfrac { 1 }{ n+2 } =\dfrac { 1 }{ 2 } -\dfrac { 1 }{ (n+1)(n+2) } $$
$$=-\left(\dfrac {1}{(n+1)(n+2)}-\dfrac {1}{2}\right)$$
So, option A is correct