Self Studies

Sequences and Series Test - 55

Result Self Studies

Sequences and Series Test - 55
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$ s_n = \displaystyle \sum_{r=0}^n \dfrac {1}{^nC_r}$$ and $$ t_n = \displaystyle \sum_{r=0}^n \dfrac {r}{^nC_r} , $$ then $$ \dfrac {t_n}{s_n} $$ is equal to - 
    Solution
    $${ S }_{ n }={ \sum   }_{ r=0 }^{ n }\cfrac { 1 }{ \; ^{ n }{ C }_{ r } } =\cfrac { 1 }{ \; ^{ n }{ C }_{ 0 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { 1 }{ \; ^{ n }{ C }_{ n-1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ n } } \\ { S }_{ n }=1+\left\{ \cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { 1 }{ \; ^{ n }{ C }_{ n-1 } }  \right\} +1\\ \; ^{ n }{ C }_{ 0 }=1,\quad \; ^{ n }{ C }_{ n }=1,\quad \; ^{ n }{ C }_{ r }=\; ^{ n }{ C }_{ n-r }\\ { S }_{ n }=2+2\left\{ \cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { 1 }{ \; ^{ n }{ C }_{ n/2 } }  \right\} \\ \cfrac { { S }_{ n }-2 }{ 2 } =\left\{ \cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { 1 }{ \; ^{ n }{ C }_{ n/2 } }  \right\} \quad \quad \quad (1)\\ { t }_{ n }={ \sum   }_{ r=0 }^{ n }\cfrac { r }{ \; ^{ n }{ C }_{ r } } =0+\cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 2 }{ \; ^{ n }{ C }_{ 2 } } +\cfrac { 3 }{ \; ^{ n }{ C }_{ 3 } } +...+\cfrac { n-2 }{ \; ^{ n }{ C }_{ n-2 } } +\cfrac { n-1 }{ \; ^{ n }{ C }_{ n-1 } } +\cfrac { n }{ \; ^{ n }{ C }_{ n } } \\ { t }_{ n }=\cfrac { 1+n-1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 2+n-2 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { n/2+n-n/2 }{ \; ^{ n }{ C }_{ n/2 } } +\cfrac { n }{ 1 } \\ { t }_{ n }=n\left[ \cfrac { 1 }{ \; ^{ n }{ C }_{ 1 } } +\cfrac { 1 }{ \; ^{ n }{ C }_{ 2 } } +...+\cfrac { 1 }{ \; ^{ n }{ C }_{ n/2 } }  \right] +n$$

    From $$(1)$$
    $${ t }_{ n }=n\left( \cfrac { { S }_{ n }-2 }{ 2 }  \right) +n\\ { t }_{ n }=n\left( \cfrac { { S }_{ n }-2+2 }{ 2 }  \right) =\cfrac { n }{ 2 } { S }_{ n }\\ \cfrac { { t }_{ n } }{ { S }_{ n } } =\cfrac { n }{ 2 } $$
  • Question 2
    1 / -0
    $$\displaystyle \sum_{r = 0}^{n}{t^3 \left( \frac{^nC_r}{^nC_{r-1}} \right)^2 }$$ is equal to
    Solution
    We have 

    $$s=\displaystyle\sum _0^nr^3\Big(\dfrac{^nC_r}{^nC_{r-1}}\Big)^2$$

    $$s=\displaystyle\sum _0^nr^3\Big(\dfrac{n-r+1}{r}\Big)^2$$

    $$s=\displaystyle\sum _0^nr\Big({n-r+1}\Big)^2$$

    $$s=\displaystyle\sum _0^nr(n^2+r^2+1-2nr-2r+2n)$$

    $$s=\displaystyle\sum _0^nr(n^2+2n+1)+r^3-2r^2(n+1)$$

    $$s=\displaystyle\sum _0^nr(n+1)^2+r^3-2r^2(n+1)$$

    $$s=\dfrac{n(n+1)^3}{2}+\dfrac{n^2(n+1)^2}{4}-\dfrac{n(n+1)^2(2n+1)}{3}$$

    Taking $$n(n+1)^{2}$$ common, we get

    $$s=n(n+1)^{2}\Big(\dfrac{(n+1)}{2}+\dfrac{n}{4}-\dfrac{(2n+1)}{3}\Big)$$

    $$s=\dfrac{n(n+1)^2(n+2)}{12}$$

    B is the correct answer
  • Question 3
    1 / -0
    Solve the given series:
    $$\dfrac {1.2^2+2.3^2+3.4^2+...n(n+1)^2}{1.2+2^2.3+3^2.4+...n^2(n+1)}$$
    Solution
    $$=\dfrac{1.2^{2}+2.3^{2}+3.4^{2}+...+n(n+1)^{2}}{1^{2}.2+2^{2}.3+3^{2}.4+...+n^{2}(n+1)}$$

    $$=\dfrac{(2-1).2^{2}+(3-1).3^{2}+(4-1).4^{2}+...+(n+1-1)(n+1)^{2}}{1^{2}.(1+1)+2^{2}.(2+1)+3^{2}.(3+1)+...+n^{2}(n+1)}$$

    $$=\dfrac{[1^{3}+2^{3}+3^{3}+4^{3}+...+(n+1)^{3}]-[1^{2}+2^{2}+3^{2}+4^{2}+...+(n+1)^{2}]}{[1^{3}+2^{3}+3^{3}+...+n^{3}]+[1^{2}+2^{2}+3^{2}+...+n^{2}]}$$

    $$=\dfrac{\left[\frac{(n+1)^{2}(n+2)^{2}}{4}\right]-\left[\frac{(n+1)(n+2)(2n+3)}{6}\right]}{\left[\frac{(n)^{2}(n+1)^{2}}{4}\right]+\left[\frac{(n)(n+1)(2n+1)}{6}\right]}$$

    $$=\dfrac{(n+1)(n+2)[6(n+1)(n+2)-4(2n+3)]}{n(n+1)[6(n)(n+1)+4(2n+1)]}$$

    $$=\dfrac{(n+2)[6n^{2}+10n]}{n[6n^{2}+14n+4]}$$

    $$=\dfrac{2n(n+2)[3n+5]}{2n[3n^{2}+7n+2]}$$

    $$=\dfrac{(n+2)(3n+5)}{(3n+1)(n+2)}$$

    $$=\dfrac{(3n+5)}{(3n+1)}$$
  • Question 4
    1 / -0
    If $$x=\dfrac{1}{5}+\dfrac{1.3}{5.10}+\dfrac{1.3.5}{5.10.15}+.....\infty$$ then $$3x^2+6x=$$
    Solution

  • Question 5
    1 / -0
    The value of $$\sum _{ n=1 }^{ 9999 }{ \cfrac { 1 }{ \left( \sqrt { n } +\sqrt { n+1 }  \right) \left( \sqrt [ 4 ]{ n } +\sqrt [ 4 ]{ n+1 }  \right)  }  } $$ is
    Solution
    Let $${ T }_{ n }=\cfrac { 1 }{ \left( \sqrt { n } +\sqrt { n+1 }  \right) \left( \sqrt [ 4 ]{ n } +\sqrt [ 4 ]{ n+1 }  \right)  } \times \cfrac { \sqrt { n+1 } -\sqrt { n }  }{ \sqrt { n+1 } -\sqrt { n }  } \\ { T }_{ n }=\cfrac { \sqrt { n+1 } -\sqrt { n }  }{ \sqrt [ 4 ]{ n+1 } +\sqrt [ 4 ]{ n }  } =\cfrac { \left( \sqrt [ 4 ]{ n+1 } -\sqrt [ 4 ]{ n }  \right) \left( \sqrt [ 4 ]{ n+1 } +\sqrt [ 4 ]{ n }  \right)  }{ \left( \sqrt [ 4 ]{ n+1 } +\sqrt [ 4 ]{ n }  \right)  } $$
    $${ T }_{ n }=\sqrt [ 4 ]{ n+1 } -\sqrt [ 4 ]{ n } \\ { T }_{ 1 }=\sqrt [ 4 ]{ 2 } -\sqrt [ 4 ]{ 1 } \\ { T }_{ 2 }=\sqrt [ 4 ]{ 3 } -\sqrt [ 4 ]{ 2 } \\ { T }_{ 3 }=\sqrt [ 4 ]{ 4 } -\sqrt [ 4 ]{ 3 } $$

    $${ T }_{ n }=\sqrt [ 4 ]{ n+1 } -\sqrt [ 4 ]{ n } $$
    Adding all
    $${ S }_{ n }=\sqrt [ 4 ]{ n+1 } -\sqrt [ 4 ]{ 1 } =\sqrt [ 4 ]{ n+1 } -1$$
    $${ S }_{ 9999 }$$$$=\sqrt [ 4 ]{ 9999+1 } -1\\ =\sqrt [ 4 ]{ 10000 } -1\\ =10-1\\ =9$$
  • Question 6
    1 / -0
    Let $${ T }_{ r }$$ and $${ S }_{ r }$$ be the $${ r }^{ th }$$ term and sum up to $${ r }^{ th }$$ term of a series respectively. If for an odd natural number $$n,{ S }_{ n }=n$$ and $${ T }_{ n }=\dfrac { { T }_{ n-1 } }{ { n }^{ 2 } }$$, then $${ T }_{ m }$$ ($$m$$ being even) is:
    Solution
    Given, 
    $$S_n=n$$  and  $$T_n=\dfrac {T_{n-1}}{n^2},$$  $$n$$ is an odd natural number.

    $$\therefore S_n - S_{n-2} =(n)-(n-2)= 2\\ \Rightarrow T_n + T_{n-1} = 2\\ \Rightarrow \dfrac {T_{n-1}}{n^2}+ T_{n-1}= 2\\ \Rightarrow \left( \dfrac{1}{n^2} + 1 \right) T_{n-1} = 2\\ \Rightarrow \left( \dfrac{1+n^2}{n^2} \right) T_{n-1} = 2\\ \Rightarrow T_{n-1} = \dfrac{2n^2}{1 + n^2}$$

    Since, $$n$$ is odd $$\Rightarrow (n-1)$$ is odd.

    Replacing $$(n-1)$$ by $$m$$ we get,
    $$T_m = \dfrac{2(m+1)^2}{1 + (m+1)^2}$$

  • Question 7
    1 / -0
    Sum of the series $$\displaystyle\sum^n_{r=1}(r^2+1)r!$$ is?
  • Question 8
    1 / -0
    In a certain code language, DIPLOMA is written as FERHQIC, then what is the code for PENCILS in the language? 
  • Question 9
    1 / -0
    If $$x\in R$$ and $$S=1-{ C }_{ 1 }\cfrac { 1+x }{ { \left( 1+nx \right)  }^{  } } +{ C }_{ 2 }\cfrac { 1+2x }{ { \left( 1+nx \right)  }^{ 2 } } -{ C }_{ 3 }\cfrac { 1+3x }{ { \left( 1+nx \right)  }^{ 3 } } +...upto\quad (n+1)$$ terms, then $$S$$
  • Question 10
    1 / -0
    The sum to infinite of the series
    $$S=1+\cfrac { 2 }{ 3 } +\cfrac { 6 }{ { 3 }^{ 2 } } +\cfrac { 6 }{ { 3 }^{ 3 } } +\cfrac { 6 }{ { 3 }^{ 4 } } +.....\quad $$ is
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now