Self Studies

Sequences and Series Test - 59

Result Self Studies

Sequences and Series Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    It is known  that $$\sum\limits_{r = 1}^\infty  {\frac{1}{{{{(2r - 1)}^2}}} = \frac{{{\pi ^2}}}{8},} $$ then $$\sum\limits_{r = 1}^\infty  {\frac{1}{{{r^2}}}} $$ is equal to 
    Solution
    Given : $$\displaystyle \sum_{r = 1}^{\infty } \frac{1}{(2r-1)^{2}} = \frac{\pi ^{2}}{8}, \sum_{r = 1}^{\infty }  \frac{1}{r^{2}} = ?? $$ 
    start putting 'r' value 
    $$\displaystyle  \frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+\frac{1}{7^{2}}------ = \frac{\pi ^{2}}{8} $$
    let say 
    $$\displaystyle   \sum_{r = 1}^{\infty }  \frac{1}{r^{2}} = k $$
    $$\displaystyle  \frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\frac{1}{4^{2}}+-----\frac{1}{r^{2}} = k $$
    $$\displaystyle  [\frac{1}{1^{2}}+\frac{1}{3^{2}}+\frac{1}{5^{2}}+-----\frac{1}{(2r-1)^{2}}]+\frac{1}{2^{2}}+\frac{1}{4^{2}}+---- = k $$
    $$\displaystyle  \frac{\pi ^{2}}{8}+\frac{1}{2^{2}}[\frac{1}{1^{2}}+\frac{1}{2^{2}}+\frac{1}{3^{2}}----] = k $$
    $$\displaystyle  \frac{\pi ^{2}}{8}+\frac{1}{4}(k) = k $$
    $$\displaystyle  \frac{\pi ^{2}}{8} = k-\frac{k}{4} = \frac{3k}{4} $$
    so, $$\displaystyle  k = \frac{\pi ^{2}}{6} $$ Answer option- C

  • Question 2
    1 / -0
    The sum  $$\frac{3}{{1.2}},\frac{3}{{1.2}},\frac{1}{2},\frac{4}{{2.3}}{\left( {\frac{1}{2}} \right)^2} + \frac{5}{{3.4}}{\left( {\frac{1}{2}} \right)^2}$$
    Solution
    $$t_n=\dfrac{n+2}{n(n+1)}\cdot \left(\dfrac{1}{2}\right)^n$$

        $$=\dfrac{2(n+1)-n}{n(n+1)} \cdot \left(\dfrac{1}{2}\right)^n$$

    $$t_n=\dfrac{1}{n}\left(\dfrac{1}{2}\right)^{n-1}-\dfrac{1}{n+1} \cdot \left(\dfrac{1}{2}\right)^n$$

    $$S_n=\sum_{n=1}^nt_n$$

         $$=\left\{\dfrac{1}{1}\left(\dfrac{1}{2}\right)^0-\dfrac{1}{2}\left(\dfrac{1}{2}\right)^1\right\}$$ $$+\left\{\dfrac{1}{2}\left(\dfrac{1}{2}\right)^1-\dfrac{1}{3}\left(\dfrac{1}{2}\right)^2\right\}+...+$$ $$=\left\{\dfrac{1}{n}\left(\dfrac{1}{2}\right)^{n-1}-\dfrac{1}{n+1}\left(\dfrac{1}{2}\right)^n\right\}$$

    $$S_n=1-\dfrac{1}{(n+1)2^n}$$
  • Question 3
    1 / -0
    If f(x)= $$x+\frac{1}{2x+\frac{1}{\frac{1}{2x+...\infty }}}$$ ; 
    then the value of f (2011). f'(2011) is :
    Solution

  • Question 4
    1 / -0
    Equation $${x^n} - 1 = 0,n \in N,$$ has roots $$1,{a_2},.....{a_n}$$.
    The value of $$\sum\limits_{r = 2}^n {\frac{1}{{1 - {a_r}}},} $$ is
    Solution

  • Question 5
    1 / -0
    Fill in the missing values.
    JVRB
    Z18242214
    L1117157
    ?915135
    T1521?11
    Solution

  • Question 6
    1 / -0
    The number of the three digits numbers having only two consecutive digits identical is:
    Solution

  • Question 7
    1 / -0
    $$1 + \frac{1}{{1 + 2}} + \frac{1}{{1 + 2 + 3}} + \frac{1}{{1 + 2 + 3 + 4}} + ...... + \frac{1}{{1 + 2 + ... + 2015}}$$
    Solution

  • Question 8
    1 / -0
    Find the missing number in the given figure?

    Solution

  • Question 9
    1 / -0
    If $$24 + 37 = 7,12 + 18 = 3$$, then 54+21=?
    Solution

  • Question 10
    1 / -0
    In the following number series,one number is wrong.find out the ?

    1,2,8,33,149,765,4626

    Solution
    1,2,8,33,149,765,4626
    Carefully analyzing the series, we can see the following pattern
    $$1\times 1+(1)^{2}=2$$
    $$2\times 2+(2)^{2}=8$$
    $$8\times 3+(3)^{2}=33$$
    $$33\times 4+(4)^{2}=148$$
    $$148\times 5+(5)^{2}=765$$
    $$765\times 6+(6)^{2}=4626$$
    So, we can clearly see that 149 is the wrong entry in the series.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now