Self Studies

Sequences and Series Test - 63

Result Self Studies

Sequences and Series Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    If $$(1+x+x^{2})^{n}=a_{0}+a_{1}+a_{2}x^{2n}$$, then $$a_{0}+a_{2}+a_{4}+........+a_{2n}x^{2n},$$ is equal to :
    Solution
    $$ { \left( { 1+x+{ x^{ 2 } } } \right) ^{ 4 } }={ a_{ 0 } }+{ a_{ 1 } }+{ a_{ 2 } }{ x^{ 2n } }+.........{ x^{ 4 } }+........{ a_{ 2x } }{ x^{ 2n } }\, \, \, \to \left( i \right)  $$

    $$\\ Put\, \, x=1\, \, in\, \, equation\, \left( i \right)  \\ { 3^{ x } }={ a_{ 0 } }+{ a_{ 1 } }+{ a_{ 2 } }+....................\to \left( { ii } \right)  $$

    $$\\ Put\, \, x=-1\, \, \, in\, \, equation\, \, \left( i \right)  \\ 1={ a_{ 0 } }-{ a_{ 1 } }+{ a_{ 2 } }-{ a_{ 3 } }+..............\to \left( { iii } \right)  \\ $$

    $$ On\, adding\, \, equation\, \, \left( { ii } \right) \, \, and\, \, \, \left( { iii } \right)  \\ { 3^{ n } }\, +1=2\left( { { a_{ 0 } }+{ a_{ 2 } }+{ a_{ 4 } }+......... } \right)  \\ \dfrac{ { 3^{ n } }+1}{2}={ a_{ 0 } }+{ a_{ 2 } }+{ a_{ 4 } }+............$$

    Hence, this is the answer.
  • Question 2
    1 / -0
    In the sum $$3+33+333+3333+.........2015$$ terms the number formed by taking the last four digits in that order is 
    Solution

  • Question 3
    1 / -0
    $$^{(2n+1)}C_{0}+^{(2n+1)}C_{1}+^{(2n+1)}C_{2}+...+^{(2n+1)}C_{n}=$$
    Solution

  • Question 4
    1 / -0
    Sum of the series $$\dfrac{1^2}{1!}+\dfrac{2^2}{2!}+\dfrac{3^2}{3!}+\dfrac{4^2}{4!}+.....$$(infinite terms) is?
    Solution
    $$ \begin{aligned} &S=\frac{1^{2}}{1 !}+\frac{2^{2}}{2 !}+\frac{3^{2}}{3 !}+\frac{4^{2}}{4 b}+\\ &\text {(infinite terems)} is \\ &S=\sum_{n=1}^{\infty} n^{2}\\ &n^{2}=a_{0}+a_{1} n+a_{2} n(n-1)\\ &n=0 \quad 0=a_{0}\\ &n=1 \quad 1=0+a, \Rightarrow a_{1}=1\\ &n=2 \quad 4=0+2+2 a_{2} \Rightarrow a_{2}=1\\ &S=\sum_{n=1}^{\infty}\left(a_{0}+a_{1} n+a_{2} n(n-1)\right) \end{aligned} $$
    $$S=\sum_{n=1}^{\infty}\left(\frac{0+n+n(n-1)}{n_{0}}\right)$$ $$S=\sum_{n=1}^{\infty} \frac{n}{n_{b}}+\sum_{n=1}^{\infty} \frac{n(n-1)}{n_{0}^{1}}$$
    $$S=e+e=2 e$$
    $$e=1+\frac{1+\frac{1}{2 !}+\frac{1}{3 !}+\frac{1}{4 !}+\cdots} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(n-1) !}$$ $$e=\sum_{n=2(n-2)\}}=1+1+\frac{1}{2 !}+\frac{1}{3 !} \cdots \cdot \cdots$$
    Option $$B$$ is correct
  • Question 5
    1 / -0
    I for $$n\in I, n> I0;1+(1+x)+(1+x)^{2}+....+(1+)^{n}=\displaystyle \sum_{k=0}^{n}a_{k}.x^{k},x\neq 0$$ then
    Solution

  • Question 6
    1 / -0
    If $$(3x-1)^{}=a_{7}x^{7}+a_{6}x^{6}+....+a_{0}$$, then $$a_{7}+a_{6}+...+a_{0}$$ is
    Solution
    $$\begin{array}{l} { \left( { 3x-1 } \right) ^{ 7 } }=\left[ { ^{ 7 }{ C_{ 0 } }.{ { \left( { 3x } \right)  }^{ 7 } }{ -^{ 7 } }{ C_{ 1 } }{ { \left( { 3x } \right)  }^{ 6 } }{ +^{ 7 } }{ C_{ 2 } }{ { \left( { 3x } \right)  }^{ 5 } }{ +^{ 7 } }{ C_{ 3 } }{ { \left( { 3x } \right)  }^{ 5 } }{ +^{ 7 } }{ C_{ 4 } }{ { \left( { 3x } \right)  }^{ 4 } }{ -^{ 7 } }{ C_{ 5 } }{ { \left( { 3x } \right)  }^{ 5 } }{ +^{ 7 } }{ C_{ 6 } }{ { \left( { 3x } \right)  }^{ 6 } }{ -^{ 7 } }{ C_{ 7 } }{ { \left( { 3x } \right)  }^{ 7 } } } \right]  \\ \Rightarrow 2187{ x^{ 7 } }-5103{ x^{ 6 } }+5103{ x^{ 5 } }-2035{ x^{ 4 } }+945{ x^{ 3 } }-189{ x^{ 2 } }+21x-1\, \, \, \, \, \, \left[ \begin{array}{l} { ^{ n } }{ C_{ 1 } }=n \\ ^{ n }{ C_{ 0 } }{ =^{ n } }{ C_{ n } }=1 \end{array} \right]  \\ \Rightarrow \therefore { a_{ 7 } }+{ a_{ 6 } }+{ a_{ 5 } }+{ a_{ 4 } }+............{ a_{ 0 } }=2187-5103+5103-2835+945-189+21-1=128\, \, \,  \end{array}$$
  • Question 7
    1 / -0
    $$\dfrac { 7 } { 11 } : \dfrac { 336 } { 110 } : ? \quad : \quad \dfrac { 720 } { 272 }$$
    Solution

  • Question 8
    1 / -0
    Find the number .

    Solution
    $$ \begin{array}{l} 4^{3}+7^{3}+3^{3}=434 \\ \text { similarly, } \\ 6^{3}+5^{3}+2^{3}=349 \\ \Rightarrow \text { ? }=8^{3}+4^{3}+2^{3} \\ \Rightarrow \text { ? }=584 \\ \text { option } D \text { is correct. } \end{array} $$
  • Question 9
    1 / -0
    $$ABCDEFGHIJKLMZYXWVUTSRQPON$$

    From the above letter series find the letter which is at the  $$6th$$  position to the right side of the letter which is at the centre position of the letters which are at the  $$11th$$  place form the left and  $$14th$$  place from the right.
    Solution

  • Question 10
    1 / -0
     There is a specific relationship between the numbers that are given in the following figures. On the basis of the relationship choose the correct alternative to replace the question mark.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now