Self Studies

Sequences and Series Test - 64

Result Self Studies

Sequences and Series Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The number of real roots of the equation $$1+a_{1}x+a_{2}x^{2}+....+a_{n}x^{n}=0$$ where $$|x| < \dfrac {1}{3}$$ and $$|a_{n}| < 2$$, is
    Solution

  • Question 2
    1 / -0
    If $${\left( {20} \right)^{19}} + 2\left( {21} \right){\left( {20} \right)^{18}} + 3{\left( {21} \right)^2}{\left( {20} \right)^{17}} + ... + 20{\left( {21} \right)^{19}} = k{\left( {20} \right)^{19}}$$ 
    then $$k$$ is equal to
    Solution

  • Question 3
    1 / -0
    If $$(1+x)^{n}=C_{0}+C_{1}x+C_{2}x^{2}+....+...C_{n}x^{n}$$, then $$\dfrac { { C }_{ 1 } }{ { C }_{ 0 } } +\dfrac { { 2C }_{ 2 } }{ { C }_{ 1 } } +\dfrac { { 3C }_{ 3 } }{ { C }_{ 2 } } +....+\dfrac { { nC }_{ n } }{ { C }_{ n-1 } } =$$
    Solution

  • Question 4
    1 / -0
    The sum of the series $$^{20}C_{0}-^{20}C_{1}+^{20}C_{2}-^{20}C_{3}+-..+^{20}C_{10}$$ is$$\dfrac{1}{2}^{20}C_{10}$$
    Solution
    The sum of the series
    $$\begin{array}{l} ^{ 20 }{ C_{ 0 } }{ -^{ 20 } }{ C_{ 1 } }{ +^{ 20 } }{ C_{ 2 } }{ -^{ 20 } }{ C_{ 3 } }+{ .....^{ 20 } }{ C_{ 10 } } \\ { \left( { 1+x } \right) ^{ 20 } }{ =^{ 20 } }{ C_{ 0 } }{ +^{ 20 } }{ C_{ 1 } }x{ +^{ 20 } }{ C_{ 2 } }{ x^{ 2 } }+{ ....^{ 20 } }{ C_{ 10 } }{ x^{ 10 } } \\ putx=-1 \\ { \left( { 1-1 } \right) ^{ 20 } }{ =^{ 20 } }{ C_{ 0 } }{ +^{ 20 } }{ C_{ 1 } }{ +^{ 20 } }{ C_{ 2 } }+......{ +^{ 20 } }{ C_{ 10 } } \\ 0{ =^{ 20 } }{ C_{ 0 } }{ -^{ 20 } }{ C_{ 1 } }{ +^{ 20 } }{ C_{ 2 } }+{ ........^{ 20 } }{ C_{ 10 } } \\ =2\left[ { ^{ 20 }{ C_{ 0 } }{ -^{ 20 } }{ C_{ 1 } }+{ { ..... }^{ 20 } }{ C_{ 9 } } } \right] { +^{ 20 } }{ C_{ 10 } } \\ ={ \frac { 1 }{ 2 } ^{ 20 } }{ C_{ 10 } } \end{array}$$

    Hence, this is the answer.
  • Question 5
    1 / -0
    Let the $$n^{th}$$ terms of a series be given by
    $$t_n$$ = $$\dfrac{n^2 -n -2}{n^2 + 3n}$$ , n 3 .
    The product $$t_3$$, $$t_4$$,.........$$t_{50}$$ equals-
  • Question 6
    1 / -0
    The sum of the series 11.212.3+13.411.2−12.3+13.4   is equal to 
    Solution
    Given,
    $$\frac{1}{1 \cdot 2}-\frac{1}{2 \cdot 3}+\frac{1}{3+4}-\frac{1}{4 \cdot 5}+\cdots$$

    We can write it as,
    $$\left(1-\frac{1}{2}\right)-\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)-\left(\frac{1}{4}-\frac{1}{5}\right)+-$$
    $$\Rightarrow\left(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}+1+\left(-\frac{1}{2}+\frac{1}{3} \frac{1}{4}+\frac{1}{5}\right)\right.$$

    because we know,
    $$\log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4} \cdot \cdot \cdot$$

    Putting x = 1
    We get,
    $$\log (2)=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5} \ldots \ldots$$

    Putting the value of log 2 in the above equation,
    $$\Rightarrow \quad \log 2+\log 2-1$$
    $$\Rightarrow \quad 2 \log 2-1=\log (2)^{2}-\log e$$
    $$= \log {\left(\frac{4}{e}\right)}$$
    Option C
  • Question 7
    1 / -0
    Match the statements in List 1 with those in List 2
    Let $$\alpha, \beta, \gamma$$ be three numbers such that $$\dfrac {1}{\alpha} + \dfrac {1}{\beta} + \dfrac {1}{\gamma} = \dfrac {1}{2}, \dfrac {1}{\alpha^{2}} + \dfrac {1}{\beta^{2}} + \dfrac {1}{\gamma^{2}} = \dfrac {9}{4}$$ and $$\alpha + \beta + \gamma = 2$$, then
    List 1List 2
    A.$$\alpha \beta \gamma$$1.$$6$$
    B.$$\sum \alpha \beta$$2.$$-8$$
    C.$$\sum \alpha^{2}$$3.$$-2$$
    D.$$\sum \alpha^{3}$$4.$$-1$$
    Solution
    (a) $$\left (\sum \dfrac {1}{\alpha}\right )^{2} = \sum \dfrac {1}{\alpha^{2}} + 2\sum = \dfrac {1}{\alpha \beta}$$
    or $$\left (\dfrac {1}{2}\right )^{2} = \dfrac {9}{4} + 2\dfrac {(\alpha + \beta + \gamma)}{\alpha \beta \gamma}$$
    or $$\dfrac {1}{4} - \dfrac {9}{4} = \dfrac {2.2}{\alpha \beta \gamma} \Rightarrow \alpha \beta \gamma = -2$$
    $$\therefore (a)\rightarrow (r)$$
    (b) $$\dfrac {1}{\alpha} + \dfrac {1}{\beta} + \dfrac {1}{\gamma} = \dfrac {1}{2} \Rightarrow \dfrac {\sum \alpha \beta}{\alpha \beta \gamma} = \dfrac {1}{2}$$
    $$\therefore \dfrac {\sum \alpha \beta}{-2} = \dfrac {1}{2}$$ by $$(a)\Rightarrow \sum \alpha \beta = -1$$
    $$\therefore (b)\rightarrow (s)$$
    (c) $$\sum \alpha^{2} = (\sum \alpha)^{2} - 2\sum \alpha \beta$$
    $$= (2)^{2} - 2(-1) = 6$$ by $$(b)$$
    (d) $$\alpha^{3} + \beta^{3} + \gamma^{3} - 3\alpha \beta \gamma = (\alpha + \beta + \gamma)$$
    $$(\alpha^{2} + \beta^{2} + \gamma^{2} - \sum \alpha \beta)$$
    $$\therefore \sum \alpha^{3} - 3(-2) = 2[-2 - (-1)] =-2$$
    $$\therefore \sum \alpha^{3} = -6 - 2 = -8$$.
  • Question 8
    1 / -0
    $$1-\dfrac { 3 }{ 2 } +\dfrac { 5 }{ 4 } -\dfrac { 7 }{ 8 } +...\dfrac { 3 }{ 2 } +\dfrac { 5 }{ 4 } -\dfrac { 7 }{ 8 } +...$$
    Solution

  • Question 9
    1 / -0
    If $${\left( {1 + x} \right)^n} = {C_0} + {C_1}x + {C_2}{x^2} + ......... + {C_n}{x^n},n \in N$$. Then find the value of $$\displaystyle C_0^2 + \frac{{C_1^2}}{2} + {2^3}\frac{{{C_2}}}{3} + {2^4}\frac{{{C_3}}}{4} + ...... + {2^{n  }}\frac{{{C_n}}}{{n + 1}} $$
    Solution

  • Question 10
    1 / -0
    The value of $$\dfrac { ^{ a }{ C }_{ 9 } }{ n } +\dfrac { { ^{ n }C_{ 1 } } }{ n+1 } +\dfrac { ^{ n }{ C }_{ 2 } }{ n+2 } +.....+\dfrac { ^{ n }{ C }_{ H } }{ 2n } $$ is equal
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now