Self Studies

Sequences and Series Test - 9

Result Self Studies

Sequences and Series Test - 9
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    If the sum of n terms of an A.P. is given by

    \(S_n = 3n + 2n ^2 \), then the common difference of the A.P. is

    Solution

    Given that \(S_n = 3n + 2n ^2 \)

    \(S_1 = 3(1) + 2(1) ^2 = 5\)

    \(S_2\) = 3(2) + 2(4) = 14

    \(S_1 = a_1 = 5\)

    \(S_2 – S_1 = a_2 = 14 – 5 = 9\)

    \(\therefore\) Common difference d = \(a_2 - a_1\) 

    = 9 – 5 = 4

  • Question 2
    1 / -0

    The third term of G.P. is 4. The product of its first 5 terms is

    Solution

    Given that \(T_3 = 4\)

    ⇒ \(ar ^{3 – 1 }= 4 [ \therefore T_n = ar ^{n – 1} ] \)

    ⇒ \(ar ^2 = 4\)

    Product of first 5 terms = a.ar. \(ar^2.ar^3.ar^4\)

    \(= a ^5 r ^{10} = (ar^ 2 )^ 5 = (4)^ 5\)

  • Question 3
    1 / -0

    If 9 times the 9th term of an A.P. is equal to 13 times the 13th term, then the 22nd term of the A.P. is

    Solution

    \(T_n \)= a + (n – 1)d

    \(\therefore T_9 \) = a + 8d

    and \(T_{13}\) = a + 12d

    As per the given condition

    9[a+8d] = 13[a + 12d]

    ⇒ 9a + 72d = 13a + 156d ⇒ - 4a = 84d

    ⇒ a = - 21d ….(i)

    Now \(T_{22}\) = a + 21d = - 21d + 21d = 0 [from eq. (i)]

  • Question 4
    1 / -0

    If x, 2y, 3z are in A.P., where the distinct numbers x, y, z are in G.P. then the common ratio of the G.P. is

    Solution

    Since x, 2y, 3z are in A.P.

    \(\therefore\) 2y – x = 3z – 2y

    ⇒ 4y = x + 3z …(i)

    Now x, y, z are in G.P.

    \(\therefore \) Common ratio \(r = \frac{y}{x} = \frac{z}{y} \dots(ii)\)

    \(\therefore \) \(y^2 = xz \dots(ii)\)

    Putting the value of x from eq. (i), we get

    \(y ^2 = (4y – 3z)z \implies y ^2 = 4yz – 3z ^2\)

    \(\implies 3z ^2 – 4yz + y ^2 = 0\)

    \(\implies 3z^ 2 – 3yz – yz + y ^2 = 0\)

    ⇒ 3z(z – y) – y(z – y) = 0

    ⇒ (3z – y) (z – y) = 0

    ⇒ 3z – y = 0 and z – y = 0

    ⇒ 3z = y and z ≠ y [\(\because\) z and y are distinct numbers]

    ⇒ \(\frac{z}{y} = \frac{1}{3} \implies r = \frac{1}{3}\) (from eq. (ii))

  • Question 5
    1 / -0

    Let \(S_n\) denote the sum of the first n terms of an A.P. If \(S_{2n}\) = \(3S_n\)then \(S_{3n}\)\(S_n\) is equal to

    Solution

    \(S_n = \frac{n}{2}[2a + (n - 1)d]\)

    \(\therefore S_{2n} = \frac{2n}{2}[2a +(2n - 1)d]\)

    \(S_{3n} = \frac{3n}{2}[2a +(3n - 1)d]\)

    As per the condition of the question, we have

    \(S_{2n} = 3. S_n\)

    ⇒ \(\frac{2n}{2}[2a +(2n -1)d] \) 

    \(3.\frac{n}{2}[2a +(n-1)d]\)

    ⇒ 2[2a + (2n – 1)d] = 3[2a + (n – 1)d]

    ⇒ 4a + (4n – 2)d = 6a + (3n – 3)d

    ⇒ 6a + (3n – 3)d – 4a – (4n – 2)d = 0

    ⇒ 2a + (3n – 3 – 4n + 2)d = 0

    ⇒ 2a + (- n – 1)d = 0

    ⇒ 2a – (n + 1)d = 0

    ⇒ 2a = (n + 1)d (i)

    Now, 

    \(S_{3n} : S_n = \frac{3n}{2}[2a +(3n - 1)d]: \frac{n}{2}[2a + (n - 1)d]\)

    \(= \frac{\frac{3n}{2}[2a +(3n - 1)d}{\frac{n}{2}[2a +(n-1)d]}\)

    \( \\ =\frac{3[2a + (3n - 1)d]}{2a + (n - 1)d}\)

    \(= \frac{3[(n + 1)d + (3n - 1)d]}{(n+1)d + (n - 1)d}\)

    \(= \frac{3d[n+1 + 3n - 1]}{d(n+1 + n -1)} = \frac{3[4n]}{2n}\)

    = 6

  • Question 6
    1 / -0

    The minimum value of \(4^x + 4^{1–x} , x \in R\), is

    Solution

    We know that AM ≥ GM

    \(\therefore \frac{4^x + 4^{1-x}}{2} \geq \sqrt{4^x .4^{1-x}}\) 

    \(\implies 4^x + 4^{1-x} \geq 2 \sqrt{4^{x+1-x}}\)

     \(\implies4^x + 4^{1-x} \geq 2.2\) 

    \(\implies 4^x + 4^{1-x} \geq 4\)

  • Question 7
    1 / -0

    Let \(S_n\) denote the sum of the cubes of the first n natural numbers and \(s_n\) denote the sum of the first n natural numbers. Then \(\displaystyle\sum_{r=1}^{n}\frac{S_r}{s_r}\) equals

    Solution

    Given that \(\displaystyle\sum_{i=1}^{n} \frac{S_r}{s_r} = \frac{S_1}{s_1} + \frac{S_2}{s_2} + \frac {S_3}{s_3} + \dots + \frac{S_n}{s_n}\)

    Let \(T_n\) be the nth term of the above series

    \(\therefore T_n = \frac{S_n}{s_n} = \frac{[\frac{n(n+1)}{2}]^2}{\frac{n(n+1)}{2}}\\ = \frac{n(n+1)}{2} = \frac{n^2 + n}{2}\)

    Now sum of the given series

    \(\sum T_n = \frac{1}{2}\sum[n^2 + n] \)

    \(= \frac{1}{2}[\sum n^2 + \sum n]\)

    \(= \frac{1}{2}[\sum n^2 + \sum n]\)

    \(= \frac{1}{2}[\frac{n(n+1)(2n +1)}{6} + \frac{n(n+1)}{2}]\)

    \(= \frac{1}{2}. \frac{n(n+1)}{2}[\frac{2n + 1}{3} + 1]\)

    \(= \frac{n(n+1)}{4}[\frac{2n + 1 + 3}{3}]\)

    \(= \frac{n(n+1)}{4}.\frac{(2n + 4)}{3}\)

    \(= \frac{n(n+1)(n+2)}{6}\)

  • Question 8
    1 / -0

    If \(t_n\) denotes the nth term of the series 2 + 3 + 6 + 11 + 18 + ... then \(t_{50}\) is

    Solution

    Let \(S_n\) = 2 + 3 + 6 + 11 + 18 + … + \(t_{50}\)

    Using method of difference, we get

    \(S_n\) = 2 + 3 + 6 + 11 + 18 + … + \(t_{50}\) ….(i)

    Subtracting eq. (ii) from eq. (i), we get

    0 = 2 + 1 + 3 + 5 + 7 + … - \(t_{50}\) terms

    ⇒ \(t_{50}\) = 2 + (1 + 3 + 5 + 7 + … upto 49 terms)

    ⇒ \(t_{50} = 2 + \frac{49}{2}[2 \times 1 + (49 - 1)2] \\ \)

    \(= 2 + \frac{49}{2}[2 + 96]\)

    \(= 2 + \frac{49}{2} \times 98 = 2 + 49 \times 49 = 49^2 + 2\)

  • Question 9
    1 / -0

    The lengths of three unequal edges of a rectangular solid block are in G.P. The volume of the block is 216 \(cm^3\) and the total surface area is 252\(cm^2\). The length of the longest edge is

    Solution

    Let the length, breadth and height of a rectangular block be \(\frac{a}{r},\) a and ar.

    [Since they are is G.p]

    ∴ Volume = l × b × h

    \(216 = \frac{a}{r} \times a \times ar\)

    ⇒ \(a^3\) = 216 ⇒ a = 6

    Now total surface area = 2[lb + bh + lh]

    \(252 = 2[\frac{a}{r}.a + a. ar + \frac{a}{r}.ar]\)

    \(= 2[\frac{a^2}{r} + a^2r + a^2]\)

    \(\implies 252 = 2a^2[\frac{1}{r} + r + 1] \)

    \(= 2 \times (6)^2 [\frac{1 + r^2 + r}{r}]\)

    \(\implies 252 = 72[\frac{1 + r^2 + r}{r}]\)

    \(\implies \frac{252}{72} = \frac{1 + r + r^2}{r}\)

    \(\implies \frac{7}{2} = \frac{1 + r + r^2}{r}\)

    ⇒ 2 + 2r + \(2r ^2\) = 7r

    ⇒ \(2r ^2\) – 5r + 2 = 0 ⇒ \(2r ^2\) – 4r – r + 2 = 0

    ⇒ 2r(r – 2) – 1(r – 2) = 0

    ⇒ (r – 2) (2r – 1) = 0

    ⇒ r – 2 = 0 and 2r – 1 = 0

    \(\therefore r = 2, \frac{1}{2}\)

    Therefore, the three edge are:

    If r = 2 then edges are 3, 6, 12

    If \(r = \frac{1}{2}\) then edges are 12, 6, 3

    So, the length of the longest edge = 12

  • Question 10
    1 / -0

    If sum of n terms of a sequence is given by \(S_n = 2n^2 \) + 3n, find its 50th term.

    Solution

    Let \(t_n\) is nth term of the sequence so \(t_n = s_n – s_{n – 1}\)

    \(2n^2\) + 3n – \(2(n – 1)^2\) – 3(n – 1) 

    = 4n + 1 

    so \(t_{50}\) = 201.

  • Question 11
    1 / -0

    Find the number of terms in the sequence 4, 12, 20, ........108.

    Solution

    a = 4, d = 8 

    so 108 = 4 + (n – 1)8 

    ⇒ n = 14

  • Question 12
    1 / -0

    Find the product of 11 terms in G.P. whose 6th is 5.

    Solution

    Using the property 

    \(a_1 a_{11} = a_2 a_{10} = a_3 a_9\) = .............. = \(a_6^2 = 25  \)

    Hence product of terms = \(5^{11}\)

  • Question 13
    1 / -0

    Find three numbers in G.P. having sum 19 and product 216.

    Solution

    Let the three numbers be a/r,  a, ar

    So, \(a[\frac{1}{r} + 1 + r] = 19 \dots(i)\)

    and \(a^3\) = 216 

    ⇒ a = 6  so from (i) 

    \(6r^2\) – 13r + 6 = 0.

    => r = 3/2, 2/3 

    Hence the three numbers are 4, 6, 9.

  • Question 14
    1 / -0

    Find the sum of the series to n terms whose general term is 2n + 1.

    Solution

    \(S_n = \sum T_n = \sum (2n + 1)\)

    = 2Σn + Σ1

    \(= \frac{2(n+1)n}{2} + n\)

    \(= n^2 + 2n\)

    or n(n + 2).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now