Self Studies

Mechanical Properties of Fluids Test - 26

Result Self Studies

Mechanical Properties of Fluids Test - 26
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The diagram shows a venturimeter through which water is flowing. The speed of water $$X$$ is $$2 \ \text{cms}^{-1}$$. The speed of water at $$Y$$ $$(\ taking\ g = 10 \text{ms}^{-2})$$ is

    Solution
    $$p_x - p_y = \dfrac{\rho}{2}(v_y^2 - v_x^2) \\\Rightarrow \Delta h \rho g=\dfrac{\rho}{2}(v_y^2 - v_x^2) \\\Rightarrow \Delta h g=\dfrac{1}{2}(v_y^2 - v_x^2) \\\Rightarrow 0.51 \times 1000=\dfrac{1}{2}(v_y^2 - 2^2) \\\Rightarrow 1020= v_y^2 - 4 \\\Rightarrow 1024= v_y^2 \\\Rightarrow v_y=32 cm/s$$
  • Question 2
    1 / -0
    An ideal fluid is:
    Solution

    An ideal fluid is one which is incompressible and non viscous. 

  • Question 3
    1 / -0
    Water stored in a tank flows out through a hole of radius 1mm at a depth 10 m below the surface of water.The rate of flow of water in $$m^3 /s$$ will be
    Solution
    According to Torricelli's Theorem velocity of efflux i.e. the velocity with which the liquid flows out of a hole is equal to $$\sqrt{2gh}$$ where $$h$$ is the depth of the hole below the liquid surface. here $$h=10m$$
    $$\Rightarrow v=\sqrt{2 \times 9.8 \times 10}=\sqrt{196}=14m/s$$
    and rate of flow $$=av=\pi (0.001)^2 \times 14=4.4 \times 10^{-5} m^3/s$$
  • Question 4
    1 / -0
    Bernoulli's equation includes as a special case:
    Solution
    Torricelli's law states that the speed of efflux, $$v$$ of a fluid through a sharp-edged hole at the bottom of a tank filled to a depth $$h$$ is the same as the speed that a body (in this case a drop of water) would acquire in falling freely from a height $$h$$.
    This problem is solved using Bernoulli's equation,
    $$gh+\dfrac{P_{atm}}{\rho}=\dfrac{v^2}{2}+\dfrac{P_{atm}}{\rho}$$
    $$\implies v=\sqrt{2gh}$$
  • Question 5
    1 / -0
    Water flows steadily through a horizontal tube of variable cross-section. If the pressure of water is p at a point where the velocity of flow is v, what is the pressure at another point where the velocity of flow is 2v; $$\rho$$ being the density of water?
    Solution
    Applying Bernoullis's Equation at two points:
    $${ p }_{ 1 }+\displaystyle\frac { \rho { { v }_{ 1 } }^{ 2 } }{ 2 } ={ p }_{ 2 }+\displaystyle\frac { \rho { { v }_{ 2 } }^{ 2 } }{ 2 }$$

    Given, $${  p }_{ 1 }=p,{ \quad v }_{ 1 }=v\quad { v }_{ 2 }={ 2v }\\ { p }_{ 2 }={ p }+\displaystyle\frac { \rho { { v } }^{ 2 } }{ 2 } -\displaystyle\frac { 4\rho { { v } }^{ 2 } }{ 2 } \\ { p }_{ 2 }={ p }-\displaystyle\frac { 3\rho { { v } }^{ 2 } }{ 2 } $$
  • Question 6
    1 / -0
    Two liquid jets coming out of the small holes at P and Q intersect at the point R. Find the position of R if we maintain the liquid level constant

    Solution
    Velocity of liquid coming out of point P        $$V_p  = \sqrt{2gh}$$
    Time taken by liquid stream to reach R     $$T_1  = \sqrt{\dfrac{2 (h+y)}{g}}$$
    $$\therefore$$     $$x  = V_p T_1   = \sqrt{4h (h+y)}$$                                              .........(1)

    Velocity of liquid coming out of point Q        $$V_Q  = \sqrt{2g(2h)}$$
    Time taken by liquid stream to reach R     $$T_2  = \sqrt{\dfrac{2 y}{g}}$$
    $$\therefore$$     $$x  = V_Q T_2   = \sqrt{4h (2h)}$$                                              .........(2)
    From (1) and (2) we get          $$4h (h+y)  = 4h (2h)$$               $$\implies y   = h$$
    $$\therefore$$  Position of R     $$x  = \sqrt{4h (h+y)}  = \sqrt{4h (h+ h)}   =2\sqrt{2} h$$

  • Question 7
    1 / -0
    A spherical ball falls through viscous medium with terminal velocity $$v$$. If this ball is replaced by another ball of the same mass but half the radius, then the terminal velocity will be (neglect the effect of buoyancy)
    Solution
    In case of spherical ball
    $$m=\dfrac{4}{3}\pi r^3 \rho$$
    keeping $$m$$ constant, if $$r$$ is halved, $$\rho$$ will increased by a factor of $$8$$;
    If buoyancy is neglected,
    $${ V }_{ T }\propto { r }^{ 2 }\rho;  \text{ otherwise } { V }_{ T }\propto { r }^{ 2 }\left ( \rho-\rho_o \right ) \\ \Rightarrow \dfrac { { V }_{ T }' }{ { V }_{ T } } =\dfrac { { r' }^{ 2 }\rho ' }{ { r }^{ 2 }\rho  } \\ \Rightarrow \dfrac { { V }_{ T }' }{ { V }_{ T } } =\dfrac { { \left( \dfrac { r }{ 2 }  \right)  }^{ 2 }8\rho  }{ { r }^{ 2 }\rho  } \\ \Rightarrow \dfrac { { V }_{ T }' }{ { V }_{ T } } =\dfrac { 2{ r }^{ 2 }\rho  }{ { r }^{ 2 }\rho  } \\ \Rightarrow \dfrac { { V }_{ T }' }{ { V }_{ T } } =2\\ \Rightarrow { V }_{ T }'=2{ V }_{ T }\\ \Rightarrow \boxed{{ V }_{ T }'=2v}$$
  • Question 8
    1 / -0
    Water is filled in a container up to height $$3\ \text{m}.$$ A small hole of area '$$a$$' is punched in the wall of the container at a height $$52.5\ \text{cm}$$ from the bottom. The cross sectional area of the container is $$A.$$ If $$\dfrac{a}{A}=0$$; then $$v^2$$ is $$($$where $$v$$ is the velocity of water coming out of the hole$$)$$
    Solution
    $$\text{According to Torricelli's Theorem velocity of efflux i.e. the velocity with which the liquid}$$
    $$\text{flows out of a hole is equal to}\ \sqrt{2gh}\ \text{where}\ h\ \text{is the depth of the hole below the liquid surface.}$$
    Here $$h=300-52.5=247.5cm=2.475m$$
    $$\Rightarrow v^2=2gh=2 \times 10 \times 2.475 = 49.5 \approx 50$$
    Hence correct choice is 'A'.
  • Question 9
    1 / -0
    In a horizontal pipeline of uniform cross section the pressure falls by $$8N/m^2$$ between two points separated by 1 km. If oil of density $$800 kg/m^3$$ flows through the pipe, find the change in KE per kg of oil at these points.
    Solution

    Applying Bernoulli's principle on a horizontal pipe, we have 
    $$P_{ 1 }+\dfrac { 1 }{ 2 } \rho { v_{ 1 } }^{ 2 }=P_{ 2 }+\dfrac { 1 }{ 2 } \rho { v_{ 2 } }^{ 2 }\\ \Rightarrow \dfrac { 1 }{ 2 } \rho { v_{ 2 } }^{ 2 }-\dfrac { 1 }{ 2 } \rho { v_{ 1 } }^{ 2 }=P_{ 1 }-P_{ 2 }\\ \Rightarrow \dfrac { 1 }{ 2 } { v_{ 2 } }^{ 2 }-\dfrac { 1 }{ 2 } { v_{ 1 } }^{ 2 }=\dfrac { P_{ 1 }-P_{ 2 } }{ \rho  } \\ \Rightarrow \text{Change in kinetic energy per unit mass } (\Delta K.E.)=\dfrac { P_{ 1 }-P_{ 2 } }{ \rho  } \\\Rightarrow \Delta K.E.=\dfrac{8}{800}=10^{-2}\mathrm{J/Kg}$$

  • Question 10
    1 / -0
    A pressure meter attached to a closed water tap reads $$1.5\times 10^5\ \text{Pa}$$. When the tap is opened, the velocity of flow of water is $$10\ \text{ms}^{-1}$$ and the reading of the pressure meter is
    Solution
    Applying Bernoulli's principle on a horizontal pipe, we have 
    $$P_1+\frac{1}{2} \rho {v_1}^2=P_2+\frac{1}{2} \rho {v_2}^2$$
    here $$P_1= 1.5 \times 10^5\ \text{pascal},\ v_1=0,\ v_2=10 \text{m/s}$$, $$\rho=1000\ \text{kg/m}^3$$
    $$P_1+\dfrac{1}{2} \rho {v_1}^2=P_2+\dfrac{1}{2} \rho {v_2}^2 \\\Rightarrow 1.5 \times 10^5=P_2+\dfrac{1}{2} \times 1000 \times {(10)}^2 $$
    solving the above equation we have $$P_2= 10^5 \text{pascal}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now