We know from Torricelli's theorem, that the range of the liquid falling from a certain height is given by:
$$ R = 2 \times \sqrt{h(H - h)} $$
where $$ H $$ is the total height of the container and
$$ h $$ is the height where the hole is.
For $$ R = R_{max} $$;
$$ \dfrac{dR}{dh} = 0 $$
$$ \dfrac{dR}{dh} = 2 \times \Big( \dfrac{1}{2 \sqrt{h}} \sqrt{H - h} + \sqrt{h} \dfrac{-1}{2 \sqrt{H - h}} \Big) $$
$$ \dfrac{dR}{dh} = \Big( \dfrac{ \sqrt{H - h}}{ \sqrt{h}} + \dfrac{- \sqrt{h}}{ \sqrt{H - h}} \Big) $$
$$ \dfrac{dR}{dh} = \dfrac{H - h -h}{\sqrt{h(H - h)}} = 0 $$ $$ \Rightarrow H - h -h = 0 $$
$$ \Rightarrow H = 2h $$
For $$ R = R_{max} $$
$$ h = \dfrac{H}{2} $$
Taking PQ as the reference,
$$ H = h + \dfrac{h}{2} = \dfrac{3h}{2} $$
So hole must be at height
$$ \dfrac{H}{2} = \dfrac{\Big( \dfrac{3h}{2} \Big)}{2} = \dfrac{3h}{4} $$
For hole 1,
$$ h_1 = \dfrac{h}{2} + 0 = \dfrac{h}{2} $$
For hole 2,
$$ h_2 = \dfrac{h}{2} + \dfrac{h}{4} = \dfrac{3h}{4} $$
For hole 3,
$$ h_3 = \dfrac{h}{2} + \dfrac{h}{2} = h $$
For hole 4,
$$ h_4 = \dfrac{h}{2} + \dfrac{3h}{4} = \dfrac{5h}{4} $$
Since, hole 2 is at the $$ \dfrac{H}{2} $$ height required for longest range.
$$ \therefore $$ Hole 2 is from which water will reach farthest distance on the plane PQ.
Hence, the correct answer is OPTION B.