To solve this question let's have some general discussion.
Top view of cylinder only one layer is A (fig i)
Thermal resistance $$\dfrac{l}{KA}$$
Thermal resistance of element with thickness dr of radius r
$$\int { dR=\int _{ { r }_{ 1 } }^{ { r }_{ 2 } }{ \dfrac { dr }{ K2\pi rL } } } $$
$$R=\dfrac { 1 }{ 2\pi KL } ln\left( \dfrac { { r }_{ 2 } }{ { r }_{ 1 } } \right) $$ (1)
Now in fig(ii) there are three layers and these layers are in series.
Resistance of layer A using formula(1)
$$=\dfrac { 1 }{ 2\pi { K }_{ A }L } ln\left( \dfrac { { r }_{ 2 } }{ { r }_{ 1 } } \right) $$ (2)
similarly resistance of layer B
$$=\dfrac { 1 }{ 2\pi { K }_{ B }L } ln\left( \dfrac { { r }_{ 3 } }{ { r }_{ 2 } } \right) $$ (3)
Similarly resistance of layer C
$$=\dfrac { 1 }{ 2\pi { K }_{ C }L } ln\left( \dfrac { { r }_{ 4 } }{ { r }_{ 3 } } \right) $$
Requivalent $$=R_A+R_B+R_C$$
$$=\dfrac { 1 }{ 2\pi { K }_{ A }L } ln\left( \dfrac { { r }_{ 2 } }{ { r }_{ 1 } } \right) +\dfrac { 1 }{ 2\pi { K }_{ B }L } ln\left( \dfrac { { r }_{ 3 } }{ { r }_{ 2 } } \right) +\dfrac { 1 }{ 2\pi { K }_{ C }L } ln\left( \dfrac { { r }_{ 4 } }{ { r }_{ 3 } } \right) $$
$$H=\dfrac { \left( { T }_{ 1 }-{ T }_{ 4 } \right) }{ \dfrac { ln\left( \dfrac { { r }_{ 2 } }{ { r }_{ 1 } } \right) }{ 2\pi { K }_{ A }L } +\dfrac { ln\left( \dfrac { { r }_{ 3 } }{ { r }_{ 2 } } \right) }{ 2\pi { K }_{ B }L } +\dfrac { ln\left( \dfrac { { r }_{ 4 } }{ { r }_{ 3 } } \right) }{ 2\pi { K }_{ C }L } } $$
$$H=\dfrac { 2\pi L\times \left( { T }_{ 1 }-{ T }_{ 4 } \right) }{ \dfrac { ln\left( \dfrac { { r }_{ 2 } }{ { r }_{ 1 } } \right) }{ { K }_{ A } } +\dfrac { ln\left( \dfrac { { r }_{ 3 } }{ { r }_{ 2 } } \right) }{ { K }_{ B } } +\dfrac { ln\left( \dfrac { { r }_{ 4 } }{ { r }_{ 3 } } \right) }{ { K }_{ C } } } $$
$$=\dfrac { 2\pi L\times 460 }{ \dfrac { { ln }2 }{ 1 } +\dfrac { ln4 }{ 2 } +\dfrac { ln8 }{ 3 } } $$
$$H=\dfrac { 2\pi L\times 460 }{ ln2+ln2+ln2 } $$
$$H=\left( \dfrac { 2 }{ 3 } \right) \dfrac{\pi L\times 460}{ln2}$$W
$$\dfrac{H}{L}=\dfrac{2}{3}\dfrac{\pi \times460}{ln2}$$