HINT: For an adiabatic process, $$PV^{\gamma} =$$ constant
For ideal gas, $$PV = nRT$$
$$\text{STEP 1: Given Conditions}$$
The given conditions for the thermodynamics cycle is,
$$T_A = 1000\;K$$
$$P_B = \dfrac 23 P_A$$
$$P_C = \dfrac 26 P_A = \dfrac 13 P_A$$
$$\textbf{STEP 2: Relation for Adiabatic Process}$$
The process $$A\rightarrow B$$ is an adiabatic process
=> $$PV^{\gamma} = constant \rightarrow(1)$$
Considering ideal gas equation $$PV = nRT$$
=> $$V = \dfrac{nRT}P \rightarrow(2)$$
Putting the value of $$V$$ in (1), we get
=> $$P\Big(\dfrac{nRT}P\Big)^{\gamma}=constant$$
=> $$\dfrac{P (nR)^{\gamma}T^{\gamma}}{P^{\gamma}} = constant$$
=> $$P^{1-\gamma}T^{\gamma} = constant$$
=> $${P_A}^{1-\gamma}{T_A}^{\gamma} = {P_B}^{1-\gamma}{T_B}^{\gamma}$$
=> $$\Big(\dfrac{P_A}{P_B}\Big)^{1-\gamma} = \Big(\dfrac{T_B}{T_A}\Big)^{\gamma}$$
=> $$\Big(\dfrac{P_B}{P_A}\Big)^{\gamma - 1} = \Big(\dfrac{T_B}{T_A}\Big)^{\gamma}$$
=> $$\Big(\dfrac{P_B}{P_A}\Big)^{1-1/\gamma} = \dfrac{T_B}{T_A}\rightarrow (3)$$
$$\textbf{STEP 3:Temperature at point B}$$
For monoatomic gas, $$\gamma = 5/3$$
Putting the value in eq (3), we get
=> $$\Big(\dfrac23\Big)^{1-\dfrac 1{5/3}}=\dfrac {T_B}{1000}$$
=> $$\Big(\dfrac 23\Big)^{1-\dfrac 35} = \Big(\dfrac{T_B}{1000}\Big)$$
=> $$\Big(\dfrac 23\Big)^{\dfrac 25} = \Big(\dfrac{T_B}{1000}\Big)$$
=> $$\Big(\dfrac 23\Big)^{0.4} = \Big(\dfrac{T_B}{1000}\Big)$$
=> $$0.85 = \Big(\dfrac{T_B}{1000}\Big)$$
=> $$0.85\times 1000 = T_B$$
=> $$T_B = 850\;K$$
Thus, option C is correct.