Since a SHM can be represented by $$x=A\sin { \left( \omega t+\phi \right) } $$
$$\Rightarrow x=A\sin { \left( \left( \dfrac { 2\pi }{ T } \right) t+\phi \right) } $$ ; $$T=6s$$
So the equation becomes: $$x=A\sin { \left( \dfrac { \pi t }{ 3 } +\phi \right) } $$
We are given that at $$t=1s, x=0 $$; so we have:
$$0=A\sin { \left( \dfrac { \pi }{ 3 } +\phi \right) } \\ \Rightarrow \left( \dfrac { \pi }{ 3 } +\phi \right) =0\\ \Rightarrow \phi =-\dfrac { \pi }{ 3 } \\ \Rightarrow x=A\sin { \left( \dfrac { \pi t }{ 3 } -\dfrac { \pi }{ 3 } \right) } \\ \Rightarrow v=\dfrac { dx }{ dt } =\dfrac { d }{ dt } \left( \sin { \left( \dfrac { \pi t }{ 3 } -\dfrac { \pi }{ 3 } \right) } \right) =\dfrac { \pi A }{ 3 } \cos { \left( \dfrac { \pi t }{ 3 } -\dfrac { \pi }{ 3 } \right) } $$
Now we are given that at $$t=2s, \left| v \right| =0.25m/s$$,
So we have: $$0.25=\left| \dfrac { \pi A }{ 3 } \cos { \left( \dfrac { 2\pi }{ 3 } -\dfrac { \pi }{ 3 } \right) } \right| \\ \Rightarrow 0.25=\left| \dfrac { \pi A }{ 3 } \cos { \left( \dfrac { \pi }{ 3 } \right) } \right| \\ \Rightarrow 0.25=\dfrac { \pi A }{ 6 } \\ \Rightarrow A=\dfrac { 3 }{ 2\pi } $$