Self Studies

Waves Test - 27

Result Self Studies

Waves Test - 27
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Which of the following statements is correct?
    Solution
    sound waves are longitudinal waves and light being a EM wave is transverse in nature .
    so the answer is D.
  • Question 2
    1 / -0
    A longitudinal wave has a compression to compression distance of 10 m. It takes the wave 5 s to pass a point. Find the velocity of wave.
    Solution
    The speed of wave is given by

    $$v = \nu \lambda$$

    where, v is the speed of the wave,$$\nu$$ is the frequency of wave and 
    $$\lambda$$ is its wavelength.

    But, $$\nu = \dfrac{1}{T}$$

    where T is a period of propagation of the wave.
    Hence,

    $$v = \dfrac{\lambda}{T}$$

    $$v = \dfrac{10}{5} = 2 ms^{-1}$$
  • Question 3
    1 / -0
    What happens when a sound wave is reflected from the boundary of a denser medium? The compression of the incident wave is returned as a 
    Solution
    Sound wave goes through $$\pi$$ phase change when reflected from the boundary of a denser medium. Hence, the compression of the incident wave is returned as a compression.
  • Question 4
    1 / -0
    A particle performing SHM is found at its equilibrium at t=1sec, and it is found to have a speed of 0.25 m/s at t=2 sec. If the period of oscillation is 6 sec , calculate amplitude of oscillation.
    Solution
    Since a SHM can be represented by $$x=A\sin { \left( \omega t+\phi  \right)  } $$

    $$\Rightarrow x=A\sin { \left( \left( \dfrac { 2\pi  }{ T }  \right) t+\phi  \right)  } $$ ; $$T=6s$$

    So the equation becomes: $$x=A\sin { \left( \dfrac { \pi t }{ 3 } +\phi  \right)  } $$

    We are given that at $$t=1s, x=0 $$; so we have: 
    $$0=A\sin

    { \left( \dfrac { \pi  }{ 3 } +\phi  \right)  } \\ \Rightarrow \left(

    \dfrac { \pi  }{ 3 } +\phi  \right) =0\\ \Rightarrow \phi =-\dfrac { \pi 

    }{ 3 } \\ \Rightarrow x=A\sin { \left( \dfrac { \pi t }{ 3 } -\dfrac {

    \pi  }{ 3 }  \right)  } \\ \Rightarrow v=\dfrac { dx }{ dt } =\dfrac { d

    }{ dt } \left( \sin { \left( \dfrac { \pi t }{ 3 } -\dfrac { \pi  }{ 3 } 

    \right)  }  \right) =\dfrac { \pi A }{ 3 } \cos { \left( \dfrac { \pi t }{

    3 } -\dfrac { \pi  }{ 3 }  \right)  }   $$

    Now we are given that at $$t=2s, \left| v \right| =0.25m/s$$, 
    So we have:
    $$0.25=\left|

    \dfrac { \pi A }{ 3 } \cos { \left( \dfrac { 2\pi  }{ 3 } -\dfrac { \pi 

    }{ 3 }  \right)  }  \right| \\ \Rightarrow 0.25=\left| \dfrac { \pi A }{ 3

    } \cos { \left( \dfrac { \pi  }{ 3 }  \right)  }  \right| \\ \Rightarrow

    0.25=\dfrac { \pi A }{ 6 } \\ \Rightarrow A=\dfrac { 3 }{ 2\pi  } $$

  • Question 5
    1 / -0
    A wave is represented by the equation $$y=10 \sin 2\pi(100t-0.02x)+10 \sin 2\pi(100+0.02x)$$. The maximum amplitude and loop length are respectively 
    Solution
    $$x= 10\sin 2\pi \Big(100t-0.02x\Big)+10\sin 2\pi \Big(100t+0.02x\Big)$$.
    $$\Rightarrow 10 [\sin A+\sin B]$$,
    where
    $$B= 2\pi \Big(100t-0.02x\Big)$$ and
    $$A= 2\pi \Big(100t+0.02x\Big)$$.
    Thus,
    $$\Rightarrow 10 [2\sin \dfrac{A+B}{2}\sin \dfrac{A-B}{2}]$$
    $$\Rightarrow 20\sin (2\pi 100t) \sin (2\pi 0.02x)$$.
     Comparing the above equation with standard standing wave equation, we get
    amplitude $$= 20$$ and wave vector$$k=\dfrac{2\pi}{\lambda}=2\pi \times 0.02 \Rightarrow \lambda = 50 $$.
    Therefore, the loop length = $$\dfrac{\lambda}{2}= 25$$
  • Question 6
    1 / -0
    Equations of motion in the same direction is given by
    $$y_1 = A\sin(\omega t - kx)$$, $$\space y_2 = A\sin(\omega t - kx - \theta)$$. The amplitude of the medium particle will be
    Solution
    Amplitude of the resultant wave is 
    $$A_R=\sqrt{A^2_1+A^2_2+2A_1A_2\cos(\theta)}$$.
    Here, $$A_1=A_2=A$$, so
    $$A_R=A\sqrt{2(1+\cos(\theta))}=2A\cos(\theta/2)$$.
  • Question 7
    1 / -0
    Two waves of equal amplitude $$x_0$$ and equal frequency travel in the same direction in a medium. The amplitude of the resultant wave is 
    Solution
    The amplitude of the resultant wave is 
    $$x'_0=\sqrt{x^2_{01}+x^2_{02}+2x_{01}x_{02}\cos(\phi)}$$, here the angle between the two propagating waves is $$\phi$$.  
    $$x'_{0}$$ is maximum when $$\phi = 0^o$$ and it becomes $$x'_{0}=x_{01}+x_{02}=2x_0$$ for $$x_{01}=x_{02}=x_0$$.
    $$x'_{0}$$ is minimum when $$\phi = 180^o$$ and it becomes $$x'_{0}=x_{01}-x_{02}=0$$ for $$x_{01}=x_{02}=x_0$$.
    The amplitude of the resultant wave is between 0 and 2$$x_0$$.
  • Question 8
    1 / -0
    A wave of frequency $$400\space Hz$$ has a velocity of $$320\space ms^{-1}$$. The distance between the particles differing in phase by $$90^{\small\circ}$$ is
    Solution

    Let, 
    Frequency of wave is, $$f = 400 Hz$$
    Velocity of wave is, $$v = 320 ms^{-1}$$
    The phase difference is, $$\phi = 90^\circ = \dfrac{\pi}{2}$$
    The wavelength of wave is, $$\lambda$$
    $$\lambda = \dfrac{v}{f}$$
    $$\lambda = \dfrac{320}{400}$$
    $$\lambda = 0.8 m$$ 
    Now, the phase difference between two particles in a wave is
    $$\dfrac{\phi}{2\pi}= \dfrac{x}{\lambda}$$
    where, x is the distance between two particles in a wave.
    $$x = \dfrac{\lambda \phi}{2 \pi}$$
    $$x = \dfrac{0.8 (\dfrac{\pi}{2})}{2 \pi}$$
    $$x = \dfrac{0.8}{4} = 0.2 m$$
    $$x = 20 cm$$

  • Question 9
    1 / -0
    The resultant amplitude due to superposition of two waves $$y_{1} = 5 \sin (wt-kx)$$ and $$y_{2}=-5 \cos (wt-kx-150^{o})$$
    Solution
    Given :
    $${ y }_{ 1 }=5\sin(wt+kx)\\ { y }_{ 2 }=5\cos(wt+kx+{ 150 }^{ \circ  })\\ y={ y }_{ 1 }+{ y }_{ 2 }$$
    where $$y$$ is the resultant wave
    The amplitude of this resultant wave is given by the formula:
    $$ A = \sqrt { { (A }_{ 1 })^ 2+({ A }_{ 2 })^ 2+2{ A }_{ 1 }{ A }_{ 2 }\cos\phi  } $$
    Here;
    $${ A }_{ 1 }=5$$
    $${ A }_{ 2 }=5$$
    $$\phi ={ 150 }^{ \circ  }$$
    on substituting the values on the given formula:
    $$ A=\sqrt { (5)^ 2+(5)^ 2+2\times 5\times 5\times \cos{ 150 }^{ \circ  } } $$
    $$ =\sqrt { 25+25-2\times 25\times \frac { 1 }{ 2 }  } .................(\cos{ 150 }^{ \circ  }=-\dfrac { 1 }{ 2 } )$$
    Hence A=5 (option A is correct)
  • Question 10
    1 / -0
    Two waves of same frequency but amplitudes equal to $$a$$ and $$2a$$ travelling in the same direction superimpose out of phase. The resultant amplitude will be
    Solution
    The amplitude of the resultant wave is 
    $$x'_0=\sqrt{a^2+ (2a)^2+2 a \times 2a\cos(\phi)}$$, here the angle between the two propagating waves is $$\phi=\pi$$. 
    Hence $$x'_0=\sqrt{a^2+ (2a)^2+2 a \times 2a\cos(\pi)}=\sqrt{a^2+ (2a)^2-2 a \times 2a}=a$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now