$$Y=A\sin { \dfrac { 2\pi }{ \lambda } } \left( vt-x \right)$$ $$ \dfrac { Y }{ A } =\sin { 2\pi } \left( \dfrac { t }{ T } -\dfrac { x }{ \lambda } \right)$$ In
first case, $$ \dfrac { { Y }_{ 1 } }{ A } =\sin { 2\pi } \left(
\dfrac { t }{ T } -\dfrac { { x }_{ 1 } }{ \lambda } \right) $$ Here, $${ Y }_{ 1 }=+6$$, $$A=8$$, $${ x }_{ 1 }=10 cm$$ $$\dfrac { 6 }{ 8 } =\sin { 2\pi } \left( \dfrac { t }{ T } -\dfrac { 10 }{ \lambda } \right) $$ .....(i) Similarly in the second case, $$\dfrac
{ 4 }{ 8 } =\sin { 2\pi } \left( \dfrac { t }{ T } -\dfrac { 25 }{
\lambda } \right)$$ .....(ii) From equation (i), $$
2\lambda \left( \dfrac { t }{ T } -\dfrac { 10 }{ \lambda } \right)
=\sin ^{ -1 }{ \left( \dfrac { 6 }{ 8 } \right) } =0.85 rad$$ $$\Rightarrow \dfrac { t }{ T } -\dfrac { 10 }{ \lambda } =0.14$$ ....(iii) Similarly from equation (ii), $$2\pi
\left( \dfrac { t }{ T } -\dfrac { 25 }{ \lambda } \right) =\sin ^{
-1 }{ \left( \dfrac { 4 }{ 8 } \right) } =\dfrac { \pi }{ 6 } rad$$ $$\Rightarrow \dfrac { t }{ T } -\dfrac { 25 }{ \lambda } =0.08$$ ....(iv) Subtracting equation (iv) from equation (iii), we get $$\dfrac { 15 }{ \lambda } =0.06$$ $$\Rightarrow \lambda =250 cm$$