Self Studies
Selfstudy
Selfstudy

Waves Test - 42

Result Self Studies

Waves Test - 42
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The path difference between two waves
    $$y_{1} = a_{1}\sin \left (\omega t - \dfrac {2\pi x}{\lambda}\right )$$ and
    $$y_{2} = a_{2}\cos \left (\omega t - \dfrac {2\pi x}{\lambda} +\phi \right )$$ is
    Solution
    Given, $$y_{1} = a_{1}\sin \left (\omega t - \dfrac {2\pi x}{\lambda}\right )$$ and
    $$y_{2} = a_{2} \cos \left (\omega t - \dfrac {2\pi x}{\lambda} + \phi \right )$$
    $$= a_{2}\sin \left (\dfrac {\pi}{2} + \omega t - \dfrac {2\pi x}{\lambda} + \phi \right )$$
    $$\therefore$$ Phase of first wave, $$\phi_{1} = \left (\omega t - \dfrac {2\pi x}{\lambda}\right )$$
    and phase of second wave, $$\phi_{2} = \dfrac {\pi}{2} + \omega t - \dfrac {2\pi x}{\lambda} + \phi$$
    $$\therefore$$ Phase difference, $$\triangle \phi = \phi_{2} - \phi_{1} = \dfrac {\pi}{2} + \phi$$
    $$\therefore$$ Path difference $$= \dfrac {\lambda}{2\pi}\times phase\ difference$$
    $$= \dfrac {\lambda}{2\pi}\left (\dfrac {\pi}{2} + \phi \right )$$.
  • Question 2
    1 / -0
    Equations of a stationary and a travelling waves are as follows, $${ y }_{ 1 }=a\sin { kx } \cos { \omega t } $$ and $${ y }_{ 2 }=a\sin { \left( \omega t-kx \right)  }$$. The phase difference between two points $${ x }_{ 1 }=\dfrac { \pi  }{ 3k } $$ and $${ x }_{ 2 }=\dfrac { 3\pi  }{ 2k } $$ are $${ \phi  }_{ 1 }$$ and $${ \phi  }_{ 2 }$$ respectively for two waves. The ratio $$\dfrac { { \phi  }_{ 1 } }{ { \phi  }_{ 2 } } $$ is :
    Solution
    At $${ x }_{ 1 }=\dfrac { \pi  }{ 3k } $$ and $${ x }_{ 2 }=\dfrac { 3\pi  }{ 2k }$$
    $$\sin{k{ x }_{ 1 }}$$ or $$\sin{k{ x }_{ 2 }}$$ is not zero.
    Therefore, neither of $${ x }_{ 1 }$$ nor $${ x }_{ 2 }$$ is a node.
    $$\Delta x={ x }_{ 2 }-{ x }_{ 1 }=\left( \dfrac { 3 }{ 2 } -\dfrac { 1 }{ 3 }  \right) \dfrac { \pi  }{ k } =\dfrac { 7\pi  }{ 6k } $$
    Since, $$\dfrac { 2\pi  }{ k } > \Delta x > \dfrac { \pi  }{ k } $$
    $$\lambda > \Delta x> \dfrac { \lambda  }{ 2 } $$          $$\left\{ k=\dfrac { 2\pi  }{ \lambda  }  \right\} $$
    Therefore, $${ \phi  }_{ 1 }=\pi $$
    and $${ \phi  }_{ 2 }=k$$
    $$\Delta x=\dfrac { 7\pi  }{ 6 } $$
    Therefore, $$\dfrac { { \phi  }_{ 1 } }{ { \phi  }_{ 2 } } =\dfrac { 6 }{ 7 } $$
  • Question 3
    1 / -0
    The minimum phase difference between two simple harmonic oscillations,
    $$y_1  = \dfrac{1}{2} sim \omega t + \dfrac{\sqrt 3}{2} cos \omega t$$
    $$y_2 = sim \omega t + cos \omega t$$, is
    Solution
    $$y_1 = \dfrac{1}{2} sim \omega t + \dfrac{\sqrt 3}{2} cos \omega t$$
    Thus we get  $$y_1= cos \dfrac{\pi}{3} sim \omega t + sin \dfrac{\pi}{3} cos \omega t$$
    $$\therefore y_1 = sim (\omega t + \pi/3)$$
    $$y_2 = \sqrt 2 \left( \dfrac{1}{\sqrt 2} sim \omega t + \dfrac{1}{\sqrt 2} cos  \omega t\right )$$
    Similarly, $$y_2 = \sqrt 2 sin (\omega t + \pi/4)$$
    Phase difference $$= \Delta \Phi = \dfrac{\pi}{3} - \dfrac{\pi}{4} = \dfrac{\pi}{12}$$
  • Question 4
    1 / -0
    Two particles move parallel to $$x$$-axis about the origin with same amplitude and frequency. At a certain instant they are found at a distance $$\dfrac{a}{3}$$ from the origin on opposite sides but their velocities are found to be in same direction.Then the phase difference between two particles will be  
    Solution
    Let phase difference between them is $$\phi$$ .
    So, $$x_1=a\,sin \,\omega t $$  and  $$ x_2=9\,sin (\omega t+\phi)$$
    or     $$\dfrac{a}{3}=a\,sin\,\omega t$$
    $$\Rightarrow$$   $$sin \,\omega t =\dfrac{1}{3}$$...............(i)
    Similarly , $$-\dfrac{a}{3}= a\,sin\,(\omega t+\phi)$$
    $$sin\,(\omega t +\phi)=-\dfrac{1}{3}$$...................................(ii)
    Eliminating $$t,$$ we get 
    $$ cos \,\phi=-1\,,\dfrac{7}{9}$$
    $$\Rightarrow$$ $$\phi=180^{0}$$
    or $$\phi=cos^{-1}\,(\dfrac{7}{9})$$
  • Question 5
    1 / -0
    The ratio of amplitudes of two simple harmonic motions represented by the equations $$y_1=5 \sin \begin{pmatrix}2\pi t + \dfrac{\pi}{4}\end{pmatrix}$$ and $$y_2=2\sqrt{2} (\sin 2\pi t + \cos 1\pi t)$$ is
    Solution
    The amplitude for first SHM equation, $$A_1=\sqrt{5^2}=5$$ and 
    the amplitude for second SHM equation, $$A_2=\sqrt{(2\sqrt 2)^2+(2\sqrt 2)^2}=\sqrt{8+8}=\sqrt {16}=4$$
    Thus, $$\dfrac{A_1}{A_2}=\dfrac{5}{4}$$
  • Question 6
    1 / -0
    If the equation $$y_{1} = A\sin \omega t$$ and $$y_{2} = \dfrac {A}{2}\sin \omega t + \dfrac {A}{2}\cos \omega t$$ represent SHM then the ratio of the amplitudes of the two motions is
    Solution
    Given, $$y_{1} = A\sin \omega t$$
    and $$y_{2} = \dfrac {A}{2} \sin \omega t + \dfrac {A}{2} \cos \omega t$$
    or $$y_{2} = \dfrac {A}{2} (\sin \omega t + \cos \omega t)$$
    $$= \dfrac {A}{3} \sqrt {2} [\sin (\omega t + 45^{\circ}]$$
    $$= \dfrac {A}{\sqrt {2}} \sin (\omega t + 45^{\circ})$$
    $$\therefore$$ The ration of amplitudes of two motions
    $$\dfrac {A_{1}}{A_{2}} = \dfrac {A}{A\sqrt {2}} = \sqrt {2}$$.
  • Question 7
    1 / -0
    The equation of simple harmonic wave is given by $$ y=6 \,sin \,2\pi ( 2 t-0.1 x),$$ where $$ x $$ and $$ y $$ are in mm and $$ t $$ is in seconds . The phase difference between two particles $$ 2 mm $$ apart at any instant is 
    Solution
    Given equation can be written as $$y = 6\sin(4\pi t- 0.2\pi x)$$
    $$\therefore$$ Phase $$\phi = -0.2\pi x$$
    $$\Rightarrow\phi_1 = -0.2\pi x_1$$ and $$\phi_2 = -0.2\pi x_2$$
    $$\therefore$$ Phase difference $$\Delta\phi =|\phi_2 - \phi_1| =| -0.2\pi(x_2-x_1)|$$
    given $$(x_2 - x_1) = 2mm$$ substituting in above equation we get $$\Delta\phi = 0.2\times{180^0}\times{2} = 72^0$$
  • Question 8
    1 / -0
    In a ripple tank when one pulse is sent every tenth of a second , the distance between consecutive pulses is $$30 mm$$. In the same depth of water pulses are produced at half second intervals. What is the new distance between consecutive pulses ?
    Solution
    At the same depth under water velocity of sound will be same 
    $$\therefore$$    $$v_1=v_2$$
    $$\Rightarrow$$ $$\dfrac{\lambda_1}{T_1}=\dfrac{\lambda_2}{T_2}$$
    $$\therefore$$   $$\lambda_2=\dfrac{T_2}{T_1}\lambda_1$$
    $$=\dfrac{1/2}{1/10} \times 30 =150 mm$$
  • Question 9
    1 / -0
    Two particles P and Q describe SHM of same amplitude a frequency v along the same straight line. The maximum distance between two particles is $$\displaystyle \sqrt { 2a } $$. The initial phase difference between the particles is :
    Solution
    Let equation of motion to particles be given by,

    $$x_1=asin(\omega t)$$ and $$x_2=asin(\omega t+\phi)$$
    So initial phase difference between two particles is $$\phi$$.

    Now, 
    $$x_2-x_1=a[sin(\omega t+\phi)-sin(\omega t)]=2asin\bigg(\dfrac{\omega t+\phi-\omega t}{2}\bigg)cos\bigg(\dfrac{\omega t+\phi+\omega t}{2}\bigg)$$
    $$=2asin(\phi/2)cos(\omega t+\phi/2)$$

    Maximum value of above expression is $$2asin(\phi/2)=\sqrt{2}a$$
    $$\implies sin(\phi/2) = 1/\sqrt{2}\implies \phi/2=\pi/4$$
    $$\implies \phi=\pi/2$$
  • Question 10
    1 / -0
    Five waveforms moving with equal speeds on the x-axis
    $${ y }_{ 1 }=8\sin { \left( \omega t+kx \right)  } ;{ y }_{ 2 }=6\sin { \left( \omega t+\cfrac { \pi  }{ 2 } +kx \right)  } ;{ y }_{ 3 }=4\sin { \left( \omega t+\pi +kx \right)  } ;$$
    $${ y }_{ 4 }=2\sin { \left( \omega t+\cfrac { 3\pi  }{ 2 } +kx \right)  } ;$$
    $${ y }_{ 5 }=4\sqrt { 2 } \sin { \left( \omega t-kx+\cfrac { \pi  }{ 4 }  \right)  } $$ are superimposed on each other. The resulting wave is:
    Solution

    Lets first find resultant of four waves using phase diagram

    first wave is representated along$$+ve$$ X-axis with vector of length equal to amplitude of the wave.

    resultant of those four can be written as (by adjusting X and Y component)

    $$R=\sqrt { { 4 }^{ 2 }+{ 4 }^{ 2 } } =4\sqrt { 2 } $$

    and $$\sin { \theta =\cfrac { 4 }{ 4\sqrt { 2 }  }  } =\cfrac { 1 }{ \sqrt { 2 }  } \\ \therefore \theta =\cfrac { \pi  }{ 4 } \\ \therefore { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }+{ y }_{ 4 }=4\sqrt { 2 } \sin { \left( wt+kx+\cfrac { \pi  }{ 4 }  \right)  } $$

    now add fifth wave

    $$\therefore y=\left( { y }_{ 1 }+{ y }_{ 2 }+{ y }_{ 3 }+{ y }_{ 4 } \right) +{ y }_{ 5 }\\ =4\sqrt { 2 } \sin { \left( wt+kx+\cfrac { \pi  }{ 4 }  \right)  } +4\sqrt { 2 } \sin { \left( wt-kx+\cfrac { \pi  }{ 4 }  \right)  } \\ =4\sqrt { 2 } \left[ 2\times \sin { \left( wt+\cfrac { \pi  }{ 4 }  \right) cos\left( kx \right)  }  \right] $$

    By using $$\sin { C } +\sin { D } =2\sin { \cfrac { C+D }{ 2 } \cos { \cfrac { C+D }{ 2 }  }  } $$

    $$\therefore y=8\sqrt { 2 } \sin { \left( wt+\cfrac { \pi  }{ 4 }  \right)  } \cos { \left( kx \right)  } $$

     

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now