Self Studies
Selfstudy
Selfstudy

Waves Test - 53

Result Self Studies

Waves Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A simple harmonic oscillation is represented by the equation y $$= 0.4 sin \left ( \frac{440t}{7}+0.61x \right )$$. Where 'Y' and 'X' are in m and time 't' in seconds respectively. The value of time period in seconds
    Solution

    It is given that,

    $$y=0.4\sin \left( \dfrac{440}{7}t+0.61x \right)$$

    From the above equation:

    $$ \omega =\dfrac{440}{7} $$

    $$ \dfrac{2\pi }{T}=\dfrac{440}{7} $$

    $$ \dfrac{2\times 22}{7T}=\dfrac{440}{7} $$

    $$ T=0.1\,s $$

  • Question 2
    1 / -0
    If a body of mass 36gm moves with S.H.M of amplitude A =13 cm and period T= 12 sec. At a time t= ) the displacement is x = +13 cm.The shortest time of passage from x = +6.5 cm to x = -6.5 is:
    Solution
    The equation of the SHM is:-
    $$y=A\cos \omega t$$ where $$ A=13cm$$ and $$\dfrac{2\pi}{T}$$
    as  $$T=125 , \Rightarrow \omega=\dfrac{2\pi }{12}=\dfrac{\pi}{6}rad/s$$
    also at $$t=0,y=13$$ as given 
    $$=y=13 \cos \left(\dfrac{\pi t}{6}\right)$$  $$\Rightarrow t=\dfrac{6}{\pi}\cos^{-1}\left(\dfrac{y}{13}\right)$$
    when particle is at $$y=6.5$$ ,time is,
    $$t_1=\dfrac{6}{\pi}\cos^{-1}\left(\dfrac{6.5}{13}\right)=\dfrac{6}{\pi}\times \dfrac{\pi}{3}=25$$
    also when $$y=-6.5$$, time is :-
    $$t_2=\dfrac{6}{\pi}\cos^{-1}\left(\dfrac{-6.5}{13}\right)=\dfrac{6}{\pi}\times \dfrac{2\pi}{3}=45$$
    $$\therefore $$ Time difference $$\Delta t=t_2-t_1=(4-2)=2s$$

  • Question 3
    1 / -0
    Three waveforms travelling along a straight line have the forms:
    $$2A\sin \left (kx - \omega t + \dfrac {\pi}{3}\right ), \sqrt {3}A \cos \left (kx - \omega t - \dfrac {\pi}{3}\right ), 2\sqrt {3} \cos \left (kx - \omega t + \dfrac {\pi}{3}\right )$$. The amplitude of the resulting waveform is :
  • Question 4
    1 / -0
    Two waves having equation $$x _ { 1 } = a \sin \left( \omega t + \phi _ { 1 } \right)$$ and $$x _ { 2 } = a \sin \left( \omega t + \phi _ { 2 } \right)$$ If in the resultant wave the frequency and amplitude remains equals to amplitude of superimposing waves. Then phase difference between them-
    Solution
    $$x_{1}=a\, sin (\omega t+\phi _{1})$$
    $$x_{2}= a\, sin (\omega t+\phi _{2})$$
    $$\triangle \phi $$ = phase difference = $$\phi _{1}-\phi _{2}$$
    Resulatant amplitude $$\Rightarrow a=\sqrt{(a)^{2}+(a)^{2}+2a^{2}cos \triangle \phi }$$
    $$\Rightarrow a^{2}=2a^{2}+2a^{2}cos \triangle \phi $$
    $$ cos \triangle \phi = -\frac{1}{2}$$
    $$\triangle \phi = \frac{2\pi}{3}$$
    Option B

  • Question 5
    1 / -0
    Three simple harmonic motions in the same direction having the same amplitude A and same period are superposed. If each differs in phase from the next by $$45^0$$, then
    Solution
    [C] $${Y_1} = A\sin \left( {wt - \dfrac{\pi }{4}} \right),\,\,{Y_2} = A\sin \left( {wt} \right),\,\,{Y_3} = A\left( {\sin wt + \dfrac{\pi }{4}} \right)$$
    on superimposing, Resultant SHM =
    $$\begin{array}{l} Y=A\left[ { 2\sin  wt\cos  \dfrac { \pi  }{ 4 } +\sin  wt } \right] \Rightarrow A\left[ { \sqrt { 2 } \sin  wt+\sin  wt } \right]  \\ Y=A\left( { 1+\sqrt { 2 }  } \right) \sin  wt,\, \, { { Resultant } }\, \, AMP=\left( { 1+\sqrt { 2 }  } \right) A \\ \frac { { \in { { resultant } } } }{ { \in { { single } } } } =\dfrac { { { { \left\{ { A\left( { 1+\sqrt { 2 }  } \right)  } \right\}  }^{ 2 } } } }{ { { A^{ 2 } } } } \Rightarrow \in { { Resultant } }\, \, =\left( { 3+2\sqrt { 2 }  } \right) { { single } } \end{array}$$
  • Question 6
    1 / -0
    Two waves $$E _ { 1 } = E _ { 0 } \sin \omega t$$  and $$E _ { 2 } = E _ { 0 } \sin ( \omega t + 60 )$$ superimpose each other. Find out initial phase of resultant wave?
    Solution
    Let the resultant wave be 
    $$E=E0' \sin (wt+\phi)$$./ Then 
    $$E=E_1+E_2$$
    $$E=E_0\sin wt +E_0\sin (wt+60^o)$$
    $$E=E_0(\sin wt +\sin (wt +60^o)$$
    As $$\sin \cos +\sin (B)=2\sin \left (\dfrac {A+B}{2}\right) \cos \left (\dfrac {B-A}{2}\right) $$
    $$\sin wt +\sin (wt +60^o)=2 \sin (wt +30^o).\cos (wt)$$
    So, $$E=2E_0 \cos (wt) \sin (wt+30^o)$$
    So, $$E_0=2E_0 \cos wt $$ and $$ \phi =30^o$$
    Option $$A$$ is correct

  • Question 7
    1 / -0
    Two particles are executing simple harmonic motion of the same amplitude $$A$$ and frequency $$\omega$$ along the $$x-axis.$$ Their mean position is separated by distance $$X_0(X_0 > A)$$. If the maximum separation between them is $$(X_0 + A ),$$ the phase difference between their motion is :-
    Solution
    $${X_1} = A\sin \left( {wt + {\phi _1}} \right)$$
    $${X_2} = A\sin \left( {wt + {\phi _2}} \right)$$
    $${X_1} - {X_2} = A\left[ {2\sin \left[ {wt + \frac{{{\phi _1}}}{{{\phi _2}}}} \right]\sin \left[ {\frac{{{\phi _1} - {\phi _2}}}{2}} \right]} \right]$$
    $$A = 2A\sin \left( {\frac{{{\phi _1} - {\phi _2}}}{2}} \right)$$
    $$\frac{{{\phi _1} - {\phi _2}}}{2} = \frac{\pi }{6}$$
    $${\phi _1} = \frac{\pi }{3}$$
    Hence,
    option $$(D)$$ is correct answer.
  • Question 8
    1 / -0
    Two $$SHMs$$ are given by $$Y_{1}= a\left[ \sin { \left( \dfrac { \pi  }{ 2 }  \right)  } t+\varphi  \right]$$ and $$Y_{2}= b\sin { \left[ \left( \dfrac { 2\pi t }{ 3 }  \right) +\varphi  \right]  }$$ . The phase difference between these two after $$'1'\ sec$$ is:
    Solution

  • Question 9
    1 / -0
    The distance between two consecutive crests in a wave train produced in string is 5 m. If two complete waves pass through any point per second, the velocity of wave is:
    Solution

    Hint:- Two wavelength passes through a point in given time so apply formula of velocity of wave accordingly.

     Step 1: Note the Given values

    Two consecutive crest =$$5\,m$$.

    Two wave cross in time, $$t=\,1\sec $$

    Wavelength = distance between two consecutive crest

    $$\lambda =5\,m$$

    Step 2: Calculate velocity of wave 

    \Velocity, $$v=\dfrac{2\lambda }{t}=\dfrac{2\times 5}{1}=10\,m{{s}^{-1}}$$

    Hence, wave speed is $$10\,m{{s}^{-1}}$$

     

  • Question 10
    1 / -0
    A body is on a rough horizontal surface which is moving horizontally in $$SHM$$ of frequency $$2\ Hz$$. The coefficient of static friction between the body and the surface is $$0.5$$. The maximum value of the amplitude for which the body will not slip along the surface is approximately 
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now