Hint:
If two waves of intensity $${{I}_{1}}\,and\,{{I}_{2}}$$ interfere, then the ration of maximum to minimum intensity in interference is
given as,
$$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left( \dfrac{\sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}}}{\sqrt{{{I}_{1}}}-\sqrt{{{I}_{2}}}}
\right)}^{2}}$$
Step 1: Assume values of intensities.
Given,
Ratio of Intensities
of two waves $${{I}_{1}}\,and\,{{I}_{2}}$$
$${{I}_{1}}:{{I}_{2}}=9:1$$ .
$$\Rightarrow {{I}_{1}}=9x,\,{{I}_{2}}=1x$$
for any constant $$x$$.
Step 2: Calculate ratio of intensities.
The ratio of maximum to minimum intensity in interference is
given as,
$$\dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left( \dfrac{\sqrt{{{I}_{1}}}+\sqrt{{{I}_{2}}}}{\sqrt{{{I}_{1}}}-\sqrt{{{I}_{2}}}}
\right)}^{2}}$$
$$\Rightarrow \dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left(
\dfrac{\sqrt{9x}+\sqrt{1x}}{\sqrt{9x}-\sqrt{1x}} \right)}^{2}}$$
$$\Rightarrow \dfrac{{{I}_{\max }}}{{{I}_{\min }}}={{\left(
\dfrac{4}{2} \right)}^{2}}$$
$$\Rightarrow \dfrac{{{I}_{\max }}}{{{I}_{\min }}}=\dfrac{4}{1}$$
$$\Rightarrow
{{I}_{\max }}:{{I}_{\min }}=4:1$$
The required ratio is 4:1. Option C.