Self Studies

Waves Test - 57

Result Self Studies

Waves Test - 57
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Two simple harmonic motions are represented by equations
    $$ y _ { 1 } = 10 \sin ( 3 \pi t + \pi / 4 )$$ and
    $$y _ { 2 } = 5 ( \sin 3 \pi t + \sqrt { 3 } \cos 3 \pi t ) \times 2 $$
    Their amplitudes are in the ratio of 
    Solution

  • Question 2
    1 / -0
    The equation of a stationary wave is $$y=0.8cos\left( \dfrac { \pi x }{ 20 }  \right) \sin 200\pi t$$ where x is in cm and t is in seconds. The separation between consecutive nodes is
    Solution

  • Question 3
    1 / -0
    The displacement of a particle is given by x = 3 sin $$\left( 5\pi t \right) $$+ 4 cos$$\left( 5\pi t \right) $$ The amplitude of particle is 
    Solution

  • Question 4
    1 / -0
    The displacement of an oscillating particle varies with time (in seconds) according to the equations $$y(cm)=sin\dfrac { \pi  }{  2} (\dfrac { t  }{  2}+\dfrac { 1  }{  3} )$$. The maximum acceleration of the particle is approximately.
    Solution
    From the given equation of the oscillation, we obtain,
    The angular frequency of the oscillation $$\omega =\dfrac{\pi}{4}$$
    The amplitude of the particle is $$a=1$$

    So, the maximum acceleration of the particle under oscillation is given as:
    $$a_{max}=\omega^2 a =\left(\dfrac{\pi}{4}\right)^2 \times1$$

    $$=0.62\ cm/sec^2$$              [$$\because a=1$$]
  • Question 5
    1 / -0
    A tunnel is dug n the earth across one of its diameter. Two masses 'm' & '2m' are dropped from the ends of the tunnel. The masses collide and stick to each other and performs S.H.M. Then amplitude of S.H.M. will be : [R=radius of the earth]
    Solution
    For mass $$'m'$$
    $$\begin{array}{l} ui+ki=uf+kf \\ \Rightarrow \dfrac { { -GMm } }{ R } +0=\dfrac { { -GM } }{ { 2{ R^{ 3 } } } } \left( { 3{ R^{ 2 } }-0 } \right) m+\dfrac { 1 }{ 2 } m{ v^{ 2 } } \\ \Rightarrow \dfrac { { -GMm } }{ R } =\dfrac { { -3GM } }{ { 2R } } +\dfrac { { { V^{ 2 } } } }{ 2 }  \\ \Rightarrow \dfrac { { -GM } }{ R } =\dfrac { { { V^{ 2 } } } }{ 2 }  \\ \Rightarrow { V^{ 2 } }=\dfrac { { 2GM } }{ R }  \\ \Rightarrow V=\sqrt { \dfrac { { 2GM } }{ R }  }  \end{array}$$
    Conserving momentum before and after collinear.
    Let $${V_{cm}}$$ is the velocity of combines mass.
    $${V_{cm}} = \dfrac{{2mv - mv}}{{3m}} = \dfrac{v}{3}$$
    Let the amplitude is $$x$$.
    $$\begin{array}{l} ui+ki=uf+kf \\ \Rightarrow \dfrac { { -3GM\left( { 3m } \right)  } }{ { 2R } } +\dfrac { 1 }{ 2 } \times 3m\times \dfrac { { { v^{ 2 } } } }{ 9 } =\dfrac { { -GM } }{ { 2{ R^{ 3 } } } } \left( { 3{ R^{ 2 } }-{ x^{ 2 } } } \right) \left( { 3m } \right) +0 \\ \Rightarrow x=\dfrac { { \sqrt { 2R }  } }{ 3 }  \end{array}$$
    $$\therefore$$ AMplitude is $$\dfrac{{\sqrt {2R} }}{3}$$
    $$\therefore$$ Option $$C$$ is correct answer.

  • Question 6
    1 / -0
    Equation of motion in the same direction is given by $$y_1 = A \ sin(\omega t - kx),  y_2 = A \ sin(\omega t - kx - \theta)$$. The amplitude of the medium particle will be
    Solution

  • Question 7
    1 / -0
    A body executing simple harmonic motion has a maximum acceleration equal to $$24metre/sec^2$$ and maximum velocity equal to $$16meter/sec$$. The amplitude of simple harmonic motion is:
    Solution

  • Question 8
    1 / -0
    The amplitude of a particle executing $$SHM$$ is $$4cm$$. At the mean position the speed of the particle is $$16cm/sec$$. The distance of the particle from the mean position at which the speed of the particle becomes $$8\sqrt {  3} cm/s$$, will be:
    Solution
    At mean position velocity is maximum
    i.e., $$v_{max}=\omega a \Rightarrow \omega =\dfrac{v_{max}}{a}=\dfrac{16}{4}=4$$

    The velocity can also be represented as:
    $$\therefore v=\omega \sqrt{a^2-y^2}$$

    $$\Rightarrow 8\sqrt 3=4\sqrt{4^2-y^2}$$

    $$\Rightarrow 192=16(16-y^2)\Rightarrow 12=16-y^2$$

    $$\Rightarrow y=2\ cm$$.
  • Question 9
    1 / -0
    A travelling wave $$Y = A$$ sin $$( k x - \omega t + \theta )$$ passes from a heavier string to lighter string. The reflected has amplitude $$0.5$$ $$A$$. The junction of the string is $$x = 0$$. The equation of the reflected wave is:
    Solution
    $$\begin{array}{l} Y=A\sin  \left( { Kx-\omega t+\theta  } \right)  \\ y'=0.5A\sin  \left( { Kx+\omega t+\theta +\pi  } \right)  \\ =-0.5A\sin  \left( { Kx+\omega t+\theta  } \right)  \\ Hence, \\ option\, \, B\, \, is\, \, correct\, \, answer. \end{array}$$
  • Question 10
    1 / -0
    The amplitude of simple harmonic motion represented by the displacement equation  y(cm) = 4(sin 5$$\pi$$t + $$\sqrt2$$cos 5$$\pi$$t) is  :
    Solution
    $$ y = u (sin5\pi t+\sqrt{2}cos5\pi t)$$
    $$ =u sin 5 \pi zt+4\sqrt{2}cos5\pi t$$
    $$ y = A sinwt + B coswt$$
    amplitude $$ = \sqrt{A^{2}+B^{2}}$$
    $$ = \sqrt{(4)^{2}+(4\sqrt{2})^{2}}$$
    $$ = 4\sqrt{3}$$
    Option (c)

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now