Self Studies

Waves Test - 63

Result Self Studies

Waves Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A particle performs simple harmonic motion with amplitude A. Its speed is trebled at the instant that it is at a distance $$\frac{2A}{3}$$ from equilibrium position. The new amplitude of the motion is  
    Solution
    $$\begin{array}{l} m{ w^{ 2 } }=k \\ Total\, \, initial\, \, energy=\frac { 1 }{ 2 } k{ A^{ 2 } } \\ at\, x=\frac { { 2A } }{ 3 } ,\, \, potential\, \, energy=\frac { 1 }{ 2 } k{ \left( { \frac { { 2A } }{ 3 }  } \right) ^{ 2 } } \\ =\left( { \frac { 1 }{ 2 } k{ A^{ 2 } } } \right) \left( { \frac { 4 }{ 9 }  } \right)  \\ Kinetic\, \, energy\, \, at\left( { x=\frac { { 2A } }{ 3 }  } \right) \, \, is=\left( { \frac { 1 }{ 2 } k{ A^{ 2 } } } \right) \left( { \frac { 5 }{ 9 }  } \right)  \\ If\, \, speed\, \, is\, \, triled,\, \, new\; \; kinetic\, \, energy=\frac { 1 }{ 2 } k{ A^{ 2 } }\cdot \frac { 5 }{ 9 } =\frac { 5 }{ 2 } k{ A^{ 2 } } \\ \therefore New\, \, total\, \, energy\, \, =\frac { 5 }{ 2 } k{ A^{ 2 } }+\frac { 1 }{ 2 } k{ A^{ 2 } }\left( { \frac { 4 }{ 9 }  } \right)  \\ if\, \, next\, \, amplitude\, \, =A' \\ then\, \, \frac { 1 }{ 2 } kA{ '^{ 2 } }\left( { \frac { { 49 } }{ 9 }  } \right)  \\ \Rightarrow A'=\frac { { 7A } }{ 3 }  \end{array}$$
    Hence,
    option $$(D)$$ is correct answer.
  • Question 2
    1 / -0
    The graph plotted between the velocity and displacement from mean position of a particle executing S,H.M. is
  • Question 3
    1 / -0
    The amplitude of vibration of a particle is given by $${ a }_{ m }=\dfrac { { a }_{ 0 } }{ { a }w^{ 2 }-bw+c } $$ Where $${ a }_{ 0 },a,b$$ and $$ c$$ are positive. The condition for a single resultant frequency is
    Solution
    For resonance, amplitude must be maximum which is possible only when the denominator of expression is zero i.e.
    $$a \omega^2-b \omega +c=0 $$

    $$\Rightarrow \omega$$ $$=\dfrac{+b \pm \sqrt{b^2-4ac}}{2a}$$
    For a single resonant frequency, $$b=4ac$$
  • Question 4
    1 / -0
    The amplitude of a wave represented by displacement equation $$ y=\frac{1}{\sqrt{a}}$$ $$\sin \omega t$$ $$\pm$$ $$\frac{1}{\sqrt{b}} $$ $$\cos \omega t$$ will be
    Solution

     

    The correct option is D

    Hint: Using trigonometry, convert the given function in suitable form.


    Explanation for correct answer:

    Step 1: Information required,

    The displacement equation is given as,

    $$y = \dfrac{1}{{\sqrt a }}\sin \omega t \pm \dfrac{1}{{\sqrt b }}\cos \omega t$$

    Reworking the wave condition as $$\sin $$. Change the $$\cos $$ to $$\sin $$ by $$\cos \omega t$$ = $$ $$ $$\sin \left( {\omega t + \dfrac{\pi}{2}} \right)$$

    $$y = \dfrac{1}{{\sqrt a }}\sin \omega t \pm \dfrac{1}{{\sqrt b }}\sin \left( {\omega t + \dfrac{\pi }{2}} \right)………….(1)$$

    From the above equation it is observed that the phase difference is $$\dfrac{\pi }{2}$$.


    Step 2: Consider general wave equation,

    The general wave equation is given as,

    $$y = A\sin \left( {\omega t + \theta } \right)…………….(2)$$

    Where A represents the amplitude.

    Compare amplitudes in both the equations (1) and (2),

    Consider amplitudes as $${A_{1,}}{A_2}$$

    Then,

    $${A_1} = \dfrac{1}{{\sqrt a }}$$  ,  $${A_2} = \dfrac{1}{{\sqrt b }}$$

    Resultant amplitude is given as,

     $$A = \sqrt {{A_1}^2 + {A_2}^2} $$

    Substituting the $${A_{1,}}{A_2}$$  values in the above equation, we get,

    $$A = \sqrt {{{(\frac{1}{{\sqrt a }})}^2} + {{(\frac{1}{{\sqrt b }})}^2}} $$

     $$ \Rightarrow A = \sqrt {\dfrac{1}{a} + \dfrac{1}{b}}$$  

    $$\therefore A = \sqrt {\dfrac{{a + b}}{{ab}}} \\ $$

    Therefore, the amplitude of the wave is $$ A = \sqrt {\dfrac{{a + b}}{{ab}}} \\ $$.

  • Question 5
    1 / -0
    A particle performs SHM of amplitude $$A$$ along a straight line. When it is at a distance $$\cfrac{\sqrt{3}}{2}A$$ from mean position, its kinetic energy gets increased by an amount $$\cfrac{1}{2}m \omega {A}^{2}$$ due to an impulsive force. Then its new amplitude becomes.
    Solution
    $$\begin{array}{l} If\, \, the\, particle\, \, performs\, \, SHM\, \, with\, \, amplitude\, \, A\, \, along\, \, the\, \, straight\, \, line,\, \, than\, \, at\, \, any\, \, po{ { int } }\, \, the\, \, total\, \, energy\, \, should\, \, be, \\ E=K+P=\frac { 1 }{ 2 } K{ A^{ 2 } }=\frac { 1 }{ 2 } m{ w^{ 2 } }{ A^{ 2 } } \\ If\, \, the\, additional\, \, kinetic\, \, energy\, \, of\, \, magnitude\, \, \frac { 1 }{ 2 } m{ w^{ 2 } }{ A^{ 2 } }\, \, by\, \, means\, \, of\, \, an\, \, impulsive\, \, force, \\ then\, \, the\, \, total\, \, energy\, \, of\, \, the\, \, particle\, \, changes\, \, to, \\ E=E+\frac { 1 }{ 2 } m{ w^{ 2 } }{ A^{ 2 } }=\frac { 1 }{ 2 } m{ w^{ 2 } }{ A^{ 2 } }+\frac { 1 }{ 2 } m{ w^{ 2 } }{ A^{ 2 } } \\ \frac { 1 }{ 2 } m{ w^{ 2 } }A{ '^{ 2 } }=\frac { 1 }{ 2 } m{ w^{ 2 } }\left( { 2{ A^{ 2 } } } \right)  \\ \Rightarrow A{ '^{ 2 } }=2{ A^{ 2 } } \\ \Rightarrow A'=\sqrt { 2 } A \end{array}$$
    Hence,
    option $$(C)$$ is correct answer.
  • Question 6
    1 / -0
    Displacement of a particle performing S.H.M. is given by  $$x = 0.01$$   $$\sin \pi ( t + 0.05 ) ,$$  where  $$x$$  is in meter and t is in seconds. The time period in second is : 
    Solution
    Hence, option $$(C)$$ is correct answer.

  • Question 7
    1 / -0
    On the superposition of the two waves given as $${y}_{1}={A}_{0}\sin{(\omega t-kx)}$$ and $${y}_{2}={A}_{0}\cos {(\omega t-kx+\cfrac{\pi}{6}})$$ the resultant amplitude of oscillation will be
    Solution
    Given,
    $$y_1=A_0 sin(\omega t-kx)$$
    $$y_2=A_0 cox(\omega t-kx+\dfrac{\pi}{6})=A_0 sin(\omega t-kx+2\pi /3)$$
    $$A_1=A_0$$
    $$A_2=A_0$$
    $$\theta=2\pi/3$$
    Resultant amplitude, 
    $$R=\sqrt{A_1^2+A_2^2+2A_1A_2cos\theta}$$
    $$R=\sqrt{A_0^2+A_0^2+2A.Acos120^0}$$
    $$R=\sqrt{2A_0^2-A^2}$$
    $$R=A_0$$
    The resultant amplitude is $$A_0$$.
    The correct option is C.
  • Question 8
    1 / -0
    A particle performs S.H.M. of amplitude A along a straight line. When it is at a distance $$\frac{\sqrt 3}{2}$$ A form measure position, its kinetic energy gets increased by an amount $$\frac{1}{2}$$ m $$\omega^2A^2$$ due to an impulsive force. Then new amplitude becomes:
    Solution
    $$\begin{array}{l} Given, \\ Dis\tan  ce\, \, x=\frac { { \sqrt { 3 }  } }{ 2 }  \\ Increased\, kinetic\, energy\, \, K.E=\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } } \\ now, \\ E=K.E+P.E \\ E=\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ x^{ 2 } }+\frac { 1 }{ 2 } m{ \omega ^{ 2 } }\left( { { a^{ 2 } }-{ x^{ 2 } } } \right)  \\ E=\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } } \\ When\, particle\, is\, at\, a\, dis\tan  ce\, of\, \frac { { \sqrt { 3 }  } }{ 2 } a\, from\, mean\, position,\, its\, kinetic\, energy\, gets\,  \\ increased\, by\, an\, amount\, \frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } }\, due\, to\, an\, impulsive\, force. \\ So,\, the\, new\, total\, energy\, is\,  \\ E'=E+\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } } \\ \frac { 1 }{ 2 } m{ \omega ^{ 2 } }a{ '^{ 2 } }=\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } }+\frac { 1 }{ 2 } m{ \omega ^{ 2 } }{ a^{ 2 } } \\ a'=\sqrt { 2 } a \\ Hence,\; the\, option\, C\, is\, the\, correct\, answer. \end{array}$$
  • Question 9
    1 / -0
    Two particles are executing SHM of same amplitude and frequency along the same straight line path. They pass each other when going in opposite directions, each time their displacement is half of their magnitude. What is the phase difference between them?
    Solution
    $$\begin{array}{l} We\, have \\ x=A\sin  \left( { \omega t+\delta  } \right) ;\, \, where\, \delta \, is\, the\, phase\, cons\tan  t. \\ For\, particle\, 1 \\ at\, X=A\, and\, t=0 \\ \frac { A }{ 2 } =A\sin  \delta  \\ \Rightarrow \frac { 1 }{ 2 } =\sin  \delta  \\ \Rightarrow \delta =\frac { \pi  }{ 6 } ,\frac { { 5\pi  } }{ 6 }  \\ The\, velocity\, is \\ v=\frac { { dx } }{ { dt } } =A\, \omega \cos  \left( { \omega t+\delta  } \right)  \\ At\, t=0\, ,\, v=A\omega t\cos  \delta ]Now, \\ \cos  \left( { \frac { \pi  }{ 6 }  } \right) =\frac { { \sqrt { 3 }  } }{ 2 } \, and\, \cos  \left( { \frac { { 5\pi  } }{ 6 }  } \right) =-\frac { { \sqrt { 3 }  } }{ 2 }  \\ As\, v\, is\, positive\, for\, particle\, 1,\delta \, must\, be\, equal\, to\, \frac { \pi  }{ 6 }  \\ for,\, particle\, 2,\, V\, is\, negative\, ,\, \delta \, must\, be\, equal\, to\, \frac { { 5\pi  } }{ 6 }  \\ Thus,\, the\, phase\, difference\, between\, them\, is\, =\frac { { 5\pi  } }{ 6 } -\frac { \pi  }{ 6 }  \\ =\frac { { 4\pi  } }{ 6 }  \\ Hence,\, the\, option\, B\, is\, the\, correct\, answer. \end{array}$$
  • Question 10
    1 / -0
    Four waves are expressed as
    (i) $$y _ { 1 } = a _ { 1 } \sin \omega t$$                                            (ii) $$y _ { 2 } = a _ { 2 } \sin 2 \omega t$$
    (iii) $$y _ { 3 } = a _ { 3 } \cos \omega t$$                                         (iv) $$y _ { 4 } = a _ { 4 } \sin ( \omega t + \phi )$$
    The interference is possible between
    Solution
    For interference frequency should be same.
    Ans. (A)
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now