Self Studies

Waves Test - 72

Result Self Studies

Waves Test - 72
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The friction coefficient between the two blocks shown in the figure is $$\displaystyle \mu $$ and the horizontal plane is smooth. What can be the maximum amplitude $$(A)$$ if the upper block does not slip relative to the lower block ?

    Solution

  • Question 2
    1 / -0
    A particle is executing SHM $$x=3\cos{\omega t} +4\sin{\omega t}$$. Find the phase shift and amplitude.
    Solution
    $$x=3\cos { \omega t } +4\sin { \omega t } $$
    lets take
    $$x_{ 0 }\cos  \phi =4$$ ............$$(I)$$
    and $$x_{ 0 }\sin  \phi =3$$ ............$$(II)$$
    Now the equation becomes
    $$x=x_{ 0 }\sin  \phi \cos { \omega t } +x_{ 0 }\cos  \phi \sin { \omega t } \\ \Rightarrow x=x_{ 0 }\left( \sin  \phi \cos { \omega t } +\cos  \phi \sin { \omega t }  \right) \\ \Rightarrow x=x_{ 0 }\sin { \left( \omega t+\phi  \right)  } $$
    Squaring and adding $$(I)$$ and $$(II)$$ we get
    $$\Rightarrow { x_{ 0 } }^{ 2 }(\cos ^{ 2 }{ \phi  } +\sin ^{ 2 }{ \phi  } )={ 4 }^{ 2 }+{ 3 }^{ 2 }=25\\ \Rightarrow x_{ 0 }=5$$
    dividing $$(II)$$ by $$(I)$$, we get
    $$\tan  \phi =\frac { 3 }{ 4 } \\ \Rightarrow \phi =37^{ \circ  }$$
    $$\Rightarrow x=5\sin { \left( \omega t+37^{ \circ  } \right)  } $$ which represents a SHM of amplitude of 5 units and a phase of $$37^{ \circ  }$$
  • Question 3
    1 / -0
    A person standing between the two vertical cliff produces a sound. Two successive echoes are heard at 4 s and 6 s. Calculate the distance between the cliffs :
    (Speed of sound in air $$= 320 m s^{-1}$$)
    Solution
    Distance traveled by the sound from the $$1^{st}$$ cliff is calculated with the formula:
    Distance traveled $$=$$ velocity of sound $$\times$$ time taken 
    That is, $$320 \times 4 $$ $$= 1280\ m$$. 
    This is twice the minimum distance between a source of sound (man) and the reflector ($$1^{st}$$ cliff) as it is reflected sound. 
    Distance traveled by the sound from the $$2^{nd}$$ cliff is calculated with the formula:
    Distance traveled $$=$$ velocity of sound $$\times$$ time taken
    That is, $$320 \times 6  = 1920\ m$$. 
    This is twice the minimum distance between a source of sound (man) and the reflector ($$2^{nd}$$ cliff) as it is reflected sound. 
    Hence, the distance between the 2 cliffs is given as: $$\dfrac { 1280 }{ 2 } +\dfrac { 1920 }{ 2 } =640+960=1600\ m$$
  • Question 4
    1 / -0
    Two wires of same material and area of cross section each of length 30 cm and 40 cm are stretched between two ends with tensions 10 N and 20 N respectively. The difference between the fundamental frequencies of two wires is 4.0 Hz, find the linear mass density of the wire.
    Solution

  • Question 5
    1 / -0

    Directions For Questions

    Two travelling waves of equal amplitudes and equal frequencies move in opposite direction along a string. They interfere to produce a standing wave having the equation $$\displaystyle y=A\: \cos \: kx\: \sin \: \omega t$$
    in which A = 1.0 mm, $$\displaystyle k=1.57\: cm^{-1}$$ and $$\displaystyle \omega =78.5\: s^{-1}$$

    ...view full instructions

    The velocity and amplitude of the component traveling waves are respectively
    Solution
    The standing wave is formed by the superposition of the waves
    $$\displaystyle y_{1}=\frac{A}{2}\sin (\omega t-kx)$$           and              $$\displaystyle y_{2}=\frac{A}{2}\sin (\omega t-kx)$$
    The wave velocity (magnitude) of either of the waves is
    $$\displaystyle v=\frac{\omega }{k}=\frac{78.5s^{-1}}{1.57cm^{-1}}=50$$ cm/s; Amplitude = 0.5 mm
  • Question 6
    1 / -0
    If for a particle moving in SHM, there is a sudden increase of $$1$$% in restoring force just as particle passing through mean position, percentage change in amplitude will be
    Solution
    As force in a simple harmonic motion is directly proportional to the square of amplitude. 
    $$F\propto { A }^{ 2 }$$
    $$\dfrac { \triangle F }{ F } =2\dfrac { \triangle A }{ A } \\ \,\,\,\,\,\,\,\,\,\, =\dfrac { \triangle F }{ F } \times 100$$
    $$\,\,\,\,\,\,\,\,\,\,\,=2\dfrac { \triangle A }{ A } \times 100\\ $$      % change in A.
    % change in amplitude
    $$\,\,\,\,\,\,=\dfrac { 1 }{ 2 } =0.5%$$
  • Question 7
    1 / -0
    A wave travelling along positive x-axis is given by $$=A\sin { \left( \omega t-kx \right)  } $$. If it is reflected from a rigid boundary such that $$80$$% amplitude is reflected, then equation of reflected wave is
    Solution
    On getting reflected from a rigid boundary the wave suffers an additional phase change of $$\pi$$.
    Hence, if $$\quad { y }_{ incident }=A\sin { \left( \omega t-kx \right)  } $$
    Then, $${ y }_{ reflected }=(0.8A)\sin { \left( \omega t-k(-x)+\pi  \right)  } =-0.8A\sin { \left( \omega t+kx \right)  } $$
  • Question 8
    1 / -0
    Equations of a stationary wave and a travelling wave are $${ y }_{ 1 } = a\ sinkx\ cos \omega t$$ and $${ y }_{ 2 } = a\ sin (\omega t - kx)$$. The phase difference between two points $${ x }_{ 1 }\ =\ \dfrac { \pi  }{ 3k } \ and\ { x }_{ 2 }\ =\ \dfrac { 3\pi  }{ 2k } \ is\ { \phi  }_{ 1 }$$ for the first wave and $${ \phi  }_{ 2 }$$ for the second wave. The ratio $$\dfrac { { \phi  }_{ 1 } }{ { \phi  }_{ 2 } }$$  is :
    Solution
    Phase difference between two points in a standing wave $$=n\pi $$
    where $$n$$ is the no of nodes between two points.
    Given points are $${ x }_{ 1 }=\pi /3K=60/K$$

                                 $${ x }_{ 2 }=3\pi /2K=210/K$$
    Equation of the standing wave.
         $${ y }_{ 1 }=asinKxcoswt$$
    at node points, $$Kx=n\pi $$
    $$x=\dfrac { n\pi  }{ K } $$                 $$(n=0,1,2,3......)$$
    so nodes are $$=\dfrac { \pi  }{ K } ,\dfrac { 2\pi  }{ K } ,\dfrac { 3\pi  }{ K } .....$$

                           $$\dfrac { 180 }{ K } ,\dfrac { 360 }{ K } ,\dfrac { 540 }{ K } $$

    Since there is only one node in b/w phase difference $${ \phi  }_{ 1 }=\pi $$
    for travelling wave
    $${ \phi  }_{ 2 }=\dfrac { 2\pi  }{ \lambda  } \triangle x$$
    from the equation, $${ y }_{ 2 }=a\sin\left( wt-Kx \right) $$
                 $$K=\dfrac { 2\pi  }{ \lambda  } $$
    $$\therefore \quad { \phi  }_{ 2 }=K\left[ { x }_{ 2 }-{ x }_{ 1 } \right] =K\left[ \dfrac { 3\pi  }{ 2K } -\dfrac { \pi  }{ 3K }  \right] $$

    $$=\pi \left[ \dfrac { 3 }{ 2 } -\dfrac { 1 }{ 3 }  \right] =\dfrac { 7 }{ 6 } \pi $$

    $$\therefore \dfrac{\phi_{1}}{\phi_{2}}=\dfrac{\pi}{\dfrac{7}{6}\pi}$$

    $$\,\,\,\,\,\,\,\,\,\,\,\,=\dfrac{6}{7}$$
  • Question 9
    1 / -0
    A harmonic wave is travelling on string 1. At a junction with string 2, it is partly reflected and partly transmitted. The linear mass density of the second string is four times that of the first string and the boundary between the two strings is at x = 0. If the expression for the incident wave is $$\displaystyle y_{1}=A_{1}\: \cos (k_{1}x-\omega _{1}t)$$
    What is the equation for the reflected wave in terms of $$\displaystyle A_{1},k_{1}$$ and $$\displaystyle \omega _{1}$$ ?
    Solution
    Since $$\displaystyle v=\sqrt{T/\mu }$$          $$\displaystyle T_{2}=T_{1}\: \: and\: \: \mu _{2}=4\mu _{1}$$
    we have                $$\displaystyle v_{2}=\frac{v_{1}}{2}$$                               ...........(i)
    The frequency does not change that is 
                                  $$\displaystyle \omega _{1}=\omega _{2}$$                       ................(ii)
    Also because $$\displaystyle k=\omega /v$$ the wave numbers of the harmonic waves in the two strings are related by
    $$\displaystyle k_{2}=\frac{\omega _{2}}{v_{2}}=\frac{\omega _{1}}{v_{1}/2}=2\frac{\omega _{1}}{v_{1}}=2k_{1}$$                 ...................(iii)
    The amplitudes are
    $$\displaystyle A_{1}=\left ( \frac{2v_{2}}{v_{1}+v_{2}} \right )A_{1}=\left [ \frac{2(v_{1}/2)}{v_{1}+(v_{1}/2)} \right ]A_{1}=\frac{2}{3}A_{1}$$                       .............(iv)
    and                    $$\displaystyle A_{1}=\left ( \frac{v_{2}-v_{1}}{v_{1}+v_{2}} \right )A_{1}=\left [ \frac{(v_{1}/2)-v_{1}}{v_{1}+(v_{1}/2)} \right ]A_{1}=\frac{A_{1}}{3}$$              .................(v)
    Now with equation (ii), (iii) and (iv) the transmitted wave can be written as
    $$\displaystyle y_{1}=\frac{2}{3}A_{1}\cos (2k_{1}x-\omega _{1}t)$$                        Ans
    Similarly the reflected wave can be expressed as
    $$\displaystyle =\frac{A_{1}}{3}\cos (k_{1}x+\omega _{1}t+\pi )$$                  
  • Question 10
    1 / -0
    A wave travels on a light string. The equation of the wave is $$Y = A\sin (kx - \omega t + 30^{\circ})$$. It is reflected from a heavy string tied to an end of the light string at $$x = 0$$. If $$64$$% of the incident energy is reflected the equation of the reflected wave is
    Solution
    $$y=A\sin\left( Kx-wt+{ 30 }^{ 0 } \right) $$
    Intensity of the reflected wave $$=64$$%$$=0.64$$
    Since $$I\alpha { A }^{ 2 }$$
    Amplitude of the reflected wave $$=\sqrt { I } =\sqrt { 0.64 } $$
                                                           $$=0.8$$  of the original
    i.e. $$80$$%
    The reflected wave always have a phase difference of $$\pi $$
    Therefore equation of the reflected wave is
    $$\left[ y=0.8Asin\left( Kx+wt+{ 30 }^{ 0 }+{ 180 }^{ 0 } \right)  \right] $$

    Hence Option (B) is correct.

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now