Self Studies

Units and Measurements Test - 25

Result Self Studies

Units and Measurements Test - 25
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The physical quantity having dimensions $$2$$ in length is:
    Solution
    $$Power  =  ML^{2} T^{-3}$$
    $$Acceleration = LT^{-2}$$
    $$force \ constant  =  M^{1}L^{0}T^{-2}$$
    $$Stress = F/A = ML^{-1}T^{-2}$$
    Hence, option A is correct.
  • Question 2
    1 / -0
    The fundamental physical quantities that have the same dimension in the dimensional formula of Torque and Angular Momentum are:
    Solution
    Torque$$\rightarrow M^{1}L^{2}T^{-2}$$
    Angular momentum$$\rightarrow M^{1}L^{2}T^{-1}$$
    Mass and length have same dimensions.
  • Question 3
    1 / -0
    The physical quantity which has the dimensional formula $${ M }^{ 1 }{ T }^{ -3 }$$ is:
    Solution
    Surface tension $$\displaystyle \rightarrow \frac{F}{l}=\frac{MLT^{-2}}{L}=MT^{-2}$$

    Solar constant $$=MT^{-3}$$

    Density $$=\dfrac{Mass}{Vol}=ML^{-3}$$
    Compressibillity $$=\dfrac{1}{Bulk \ Modulus}=\dfrac{\dfrac{dv}{v}}{dp}=\dfrac{L^{3}/L^{3}}{ML^{-1}T^{-2}}=M^{-1}L^{1}T^{2}$$

    Hence, option B is correct.
  • Question 4
    1 / -0
    The unit of impulse per unit area is same as that of:
    Solution
    $$\displaystyle \frac { Impulse }{ Area } = \frac { f\times t }{ Area } =\frac { [{ M }^{ 1 }{ L }^{ 1 }{ T }^{ -2 }]\times [{ T }^{ 1 }] }{ [{ L }^{ 2 }] } =[ M{ L }^{ -1 }{ T }^{ -1 }]$$

    $$Viscocity = \dfrac{stress}{\dfrac{dv}{dy}} = [M{ L }^{ -1 }{ T }^{ -1 }]\quad $$

    $$Surface \ Tension = \dfrac{f}{l}= \dfrac {[ M{ L }^{ 1 }{ T }^{ -2 } ]}{ [{ L }^{ 1 }] } = { [MT }^{ -2 }]$$

    $$Bulk \ Modulus = \dfrac { dP }{ dV/v } =[ { M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 }]\quad $$

    Hence, option A is correct.
  • Question 5
    1 / -0
    Given $$M$$ is the mass suspended from a spring of force constant $$k$$. The dimensional formula for $$\left[ M/k \right] ^{ 1/2 }$$ is same as that for:
    Solution
    $$ K = \dfrac{f}{x} = \dfrac { { MLT }^{ -2 } }{ L } ={ MT }^{ -2 }$$

    $$\displaystyle \Rightarrow  \frac { M }{ K }  = \frac { { M }^{ 1 } }{ { M }^{ 1 }{ T }^{ -2 } }  = { T }^{ 2 }$$

    $$\Rightarrow \sqrt { M/K } \quad =\quad { T }^{ 1 }$$

    Hence, option B is correct.
  • Question 6
    1 / -0
    $$\dfrac { 1 }{ \sqrt { Capacitance\times Inductance }  } $$ has the same unit as:
    Solution
    $$C=Capacitance = { M }^{ -1 }{ L }^{ -2 }{ I }^{ 2 }{ T }^{ Y }$$
    $$ I=Inductance =M{ L }^{ 2 }{ I }^{ -2 }{ T }^{ -2 }$$

    $$\dfrac { 1 }{ \sqrt { CI }  } = \dfrac { I }{ \sqrt { \left( { M }^{ -1 }{ L }^{ -2 }{ I }^{ 2 }{ T }^{ 4 } \right) \times \left( M{ L }^{ 2 }{ I }^{ -2 }{ T }^{ -2 } \right)  }  } $$

    $$\displaystyle \frac { 1 }{ \sqrt { CI }  } =\frac { 1 }{ T } = { T }^{ -1 }$$

    $$Time = { T }^{ 1 }, Velocity = { LT }^{ -1 }$$

    $$Velocity _{grad} = \dfrac{dv}{dx} = \dfrac { { LT }^{ -1 } }{ L } = { T }^{ -1 } $$

    Hence, option C is correct.
  • Question 7
    1 / -0
    Dimensions of solar constant are:
    Solution
    Solar constant(S) is defined as energy due to sun falling on an unit area per unit time .
    $$\Rightarrow \displaystyle S=\left ( \frac{E}{A} \right )\times \frac{1}{T}=\left ( \frac{ML^{2}}{T^{2}} \right )\times \frac{1}{L^{2}}\times \frac{1}{T}=MT^{-3}$$
  • Question 8
    1 / -0
    If the unit of work is $$100J$$, the unit of power is $$1KW$$, the unit of time in second is:
    Solution
    Power $$=1000=M^{1}L^{2}T^{-3}$$

    Work $$=100=M^{1}L^{2}T^{-2}$$ 

    Work $$=power \times time$$

    $$\displaystyle time=\frac{work}{power}=T^{1}=\frac{100}{1000}=\frac{1}{10}$$

    Hence, Option A is correct.
  • Question 9
    1 / -0
    According to theory of significant figures $$\left( 2.0 \right) ^{ 10 }$$ is :
    Solution
    $$\left ( 2.0 \right )^{10}=1024$$
    But since 2.0 contains 2 significant figure.
    So, $$1024=1.0\times 10^{3}$$
  • Question 10
    1 / -0
    Dimensions of '$$ohm$$' are same as that of:
    (Given : $$h$$ is Planck's constant and $$e$$ is charge)
    Solution
    $$a  =  ohm = ML^{2}I^{-2}T^{-3}$$
    $$b = h = ML^{2}T^{-1}$$
    $$c = e = I^{1}T^{1}$$
    $$a = b^{\alpha } c^{\beta }$$
    $$ML^{2}I^{-2}T^{-3}  =  (ML^{2}T^{-1})^{\alpha }  (I^{1}T^{1})^{\beta} $$
    $$\Rightarrow   \beta  = -2,    \alpha  = 1$$
    $$ \Rightarrow ohm  =  \dfrac{h}{e^{2}}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now