Self Studies

Units and Measurements Test - 43

Result Self Studies

Units and Measurements Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The pair of physical quantities that have same dimensions are:
    a) Reynold's number and coefficient of friction
    b) Latent heat and gravitational potential
    c) Curie and frequency of light wave
    d) Planck constant and torque
    Solution
    Coefficient of friction and Reynolds no. have no dimensions.
    Planck's constant $$=ML^{2}T^{-1}$$
    Torque $$=ML^{2}T^{-2}$$
    Latent heat $$=\dfrac{energy}{mass}=\dfrac{M^{1}L^{2}T^{-2}}{M}=L^{2}T^{-2}$$
    Gravitational potential 
    $$=\dfrac{GM}{r}=\dfrac{force}{mass}\times r$$$$=\dfrac{M^{1}L^{1}T^{-2}}{M^{1}}\times L^{1}$$$$=L^{2}T^{-2}$$
    Curie $$=$$ freq $$ =M^{0}L^{0}T^{-1}$$

  • Question 2
    1 / -0
    Which of the following pairs have same dimensions.
    a) Torque and work
    b) Angular momentum and work
    c) Energy and Youngs modulus
    d) Light year and wavelength
    Solution

    Torque $$=$$ Work $$=$$ Energy $$=[ML^{2}T^{-2}]$$
    Angular momentum $$=mvr=[ML^{2}T^{-1}]$$
    Young's modulus $$=[ML^{-1}T^{-2}]$$
    Light year and wavelength $$=[M^{0}L^{1}T^{0}]$$
    Hence option D is correct.

  • Question 3
    1 / -0
    Names of units of some physical quantities are given in List - I and their dimensional formulae are given in List - II. Match the correct pair of the lists.
    List - IList - II
    a) Pa-se) $$\left[ { L }^{ 2 }{ T }^{ -2 }{ K }^{ -1 } \right] $$
    b) $${ NmK }^{ -1 }$$f) $${ MLT }^{ -3 }{ K }^{ -1 }$$
    c) $${ J kg }^{ -1 }{ k }^{ -1 }$$g) $${ ML }^{ -1 }{ T }^{ -1 }$$
    d) $${ Wm }^{ -1 }{ k }^{ -1 }$$h) $$\left[ { ML }^{ 2 }{ T }^{ -2 }{ K }^{ -1 } \right] $$
    Solution
    $$Pa-s=M^{1}L^{-1}T^{-2}\times T^{1}=ML^{-1}T^{-1}$$
    $$Nmk=M^{1}L^{1}T^{-2}\times L^{1}\times K^{1}=M^{1}L^{2}T^{-2}K^{-1}$$
    $$Jkg^{-1}K^{-1}=ML^{2}T^{-2}M^{-1}K^{-1}=M^{0}L^{2}T^{-2}K^{-1}$$
    $$Wm^{-1}K^{-1}=ML^{2}T^{-3}L^{-1}K^{-1}=MLT^{-3}K^{-1}$$
    Hence option D is correct.
  • Question 4
    1 / -0
    Watt per meter kelvin is the unit of
    Solution
    $$\dfrac { Watt }{ \left( meter \right) \times \left( kelvin \right)  } =\dfrac { M{ L }^{ 2 }{ T }^{ -3 } }{ LK } =M{ L }{ T }^{ -3 }{ K }^{ -1 }$$
    Coefficient of thermal conductivity $$\left( k \right) =\dfrac { \left( \dfrac{q}{A} \right) \times \ t }{ dT } $$

    $$\left( q/A \right) =$$ heat transfer per unit area$$\left( W/{ m }^{ 2 } \right) $$

    $$dT=$$ temperature difference
    $$t=$$ thickness

    $$\left[ k \right] =\dfrac { \left[ M{ L }^{ 2 }{ T }^{ -3 } \right] \left[ { L }^{ -2 } \right] \left[ L \right]  }{ \left[ K \right]  } =M{ L }{ T }^{ -3 }{ K }^{ -1 }$$
  • Question 5
    1 / -0
    Match List I with List II and select the correct answer.
    List - IList - II
    A) Spring constantI) [$${ M }^{ 1 }{ L }^{ 2 }{ T }^{ -2 }$$]
    B) PascalII) [$${ M }^{ 0 }{ L }^{ 0 }{ T }^{ -1 }$$]
    C) HertzIII)[ $${ M }^{ 1 }{ L }^{ 0 }{ T }^{ -2 }$$]
    D) JouleIV) [$${ M }^{ 1 }{ L }^{ -1 }{ T }^{ -2 }$$]
    Solution
    $$Spring \ constant,  \ k=\dfrac{F}{x}=\dfrac{MLT^{-2}}{L}=[M^1L^0T^{-2}$$]

    $$Hertz=\dfrac{1}{t}=[M^0L^0T^{-1}$$]

    $$Pascal=\dfrac{F}{A}=\dfrac{MLT^{-2}}{L^2}=[M^1L^{-1}T^{-2}$$]

    $$Joule=[M^1L^2T^{-2}$$]
  • Question 6
    1 / -0
    Study the following.
    List - IList - II
    a) Same negative dimensions of massI) Pressure, Rydberg constant
    b) Same negative dimensions of lengthII) Mangnetic induction field, Potential
    c) Same dimensionsIII) Capacity, Universal gravitational constant
    d) Same dimension of currentIV) Energy density, Surface tension
    Solution
    Pressure=$$\dfrac{force}{area}=\dfrac{mass\times acc^{n}}{area}=\dfrac{MLT^{-2}}{L^{2}}=ML^{-1}T^{-2}$$

    Unit of  Rydberg constant $$=L^{-1}$$ ( These 2 quantities have same -ve dimension of length)

    Surface tension $$=M^{1}L^{0}T^{-2}$$
    Energy density $$=$$ Energy per unit area $$=\dfrac{ML^{2}T^{-2}}{L^{2}}=ML^{0}T^{-2}$$
    $$\rightarrow $$(same dimensional formula)

    Potential$$=ML^{2}T^{-3}A^{-1}$$
    Magnetic induction field $$=ML^{2}A^{-1}T^{-4}$$(same dimension for current)
  • Question 7
    1 / -0
    Match the physical quantities given in Column I with suitable dimensions expressed in Column II.
    Column IColumn II
    a) Angular momentumg) $${ ML }^{ 2 }{ T }^{ -2 }$$
    b) Latent heath)  $${ ML }^{ 2 }{ Q }^{ -2 }$$
    c) Torquei)  $${ ML }^{ 2 }{ T }^{ -1 }$$
    d) Capacitanej)  $${ ML }^{ 3 }{ T }^{ -1 }{ Q }^{ -2 }$$
    e) Inductancek)  $${ M }^{ -1 }{ L }^{ -2 }{ T }^{ 2 }{ Q }^{ 2 }$$
    f) Resistivityl)  $${ L }^{ 2 }{ T }^{ -2 }$$
    Solution
    Angular momentum = $$mvr=ML^2T^{-1}$$

    Latent Heat, $$Q=ML, \dfrac{Q}{M}=L, [L]=M^0L^2T^{-2}$$

    Torque $$=F\times perpendicular \ distance= MLT^{-2}L=ML^2T^{-2}$$

    Inductance $$=\dfrac{2E}{I^2}=L=\dfrac{ML^2T^{-2}}{A^2}=ML^2T^{-2}A^{-2}$$

    Capacitance $$C=\dfrac{Q^2}{2E}=\dfrac{A^2T^2}{ML^2T^{-2}}$$

    Resistivity$$=ML^{3}T^{-1}Q^{-2}$$

    Option A is the appropriate choice.
  • Question 8
    1 / -0
    The correct order in which the dimensions of length increases in the following physical quantities is:
    a) permittivity
    b) resistance
    c) magnetic permeability
    d) stress
    Solution
    a) Permittivity $$=M^{-1}L^{-3}T^{4}I^{2}={\epsilon}_{0}$$
    b) Resistance$$=ML^{2}T^{-1}Q^{-2}$$
    c) Magnetic permeability$$=\mu_{0}=MLT^{-2}I^{-2}$$
    d) Stress$$=F/A=ML^{-1}T^{-2}$$
    Hence, dimensions of length in a<d<c<b.
  • Question 9
    1 / -0
    The dimensional formula for pressure gradient is :
    Solution
    Pressure gradient $$=\dfrac{dp}{dx}$$

    $$\displaystyle p=\frac{force}{Area}=\left ( kg\frac{m}{s^{2}} \right )\left ( \frac{1}{m^{2}} \right )=ML^{-1}T^{-2}$$

    Where,  
    $$x=L\left ( M^{0} L^{1}T^{0}\right )$$

    So, $$\displaystyle \frac{dp}{dx}=\frac{ML^{-1}T^{-2}}{M^{0}L^{1}T^{0}}=ML^{-2}T^{-2}$$
  • Question 10
    1 / -0
    L, C and R represents inductance, capacitance and resistance respectively. The combinations that have the dimensions of frequency are :
    Solution
    We know that unit for the frequency is per second i.e.$$ [T]^{ -1 }$$
    Now let us consider the dimensions of the given physical quantities.
    We know that Capacitance i.e.
     $$C=Q/V$$
    where Q is electric charge and V is electric potential. 
    Now we know that Q= It where I is current and t is time. 
    Also that V=IR where R is resistance.
    So,
    $$C= It/IR$$
    Thus, 
    $$C= t/R$$
    also $$1/t=1/RC$$
    Thus dimension of $$1/RC$$ will be $$[T^{-1}]$$ that is same as that of frequency.

    Now Inductance(L) can be given as 
    $$L= Vt/I$$ 
    And also $$V=IR$$ 
    Therefore $$L=IRt/I$$
    Thus, $$R/L = 1/t$$

    It means both A and B are correct now checking for the third option 
    $$LC= Rt * t/R = t^2$$
    That gives $$1/\sqrt { LC } = 1/t$$
    Thus dimension of $$1/\sqrt{LC}$$ will be $$T^{-1}$$ that is same as that of frequency.
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now