Self Studies

Units and Measurements Test - 44

Result Self Studies

Units and Measurements Test - 44
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Dimension of specific heat is:
    Solution
    $$Q=ms\delta\theta$$
    Dimension for specific heat will be $$=\dfrac{ML^2T^{-2}}{MK}$$$$=M^0L^2T^{-2}K^{-1}$$
  • Question 2
    1 / -0
    The dimensional formula for latent heat is :
    Solution

    $$\textbf {Hint :}$$ Use latent heat $$L$$ =$$\dfrac{Q}{m}$$

    $${\textbf{Explanation:}}$$

    Latent heat, $$L$$ =$$\dfrac{Q}{m}=\dfrac{Energy\ released\ or\ absorbed}{Mass}$$

    Dimensional formula of $$L$$  $$=\dfrac{M^{1}L^{2}T^{-2}}{M^{1}}$$

                                                 $$=M^{0}L^{2}T^{-2}$$


    $${\textbf{Correct option: C}}$$

  • Question 3
    1 / -0

    Dimensional formula of magnetic field of induction (B) is:

    Given Force on a charged particle is given by: $$F = qvBsin \theta$$ where $$\theta$$ is angle between velocity and magnetic field.

    Solution
    It is given:
    $$F=qvBsin \theta$$
    Hence, $$B= \dfrac{F}{qvsin\theta}$$
    Dimensional formula of magnetic field is:
    $$[B] = [F/qv]$$ as $$sin \theta$$ is dimensionless
    $$[B] = [MLT^{-2}][I^{-1}T^{-1}][L^{-1}T]$$
    $$[B] = [MT^{-2}I^{-1}]$$
  • Question 4
    1 / -0
    Match the following
    Column-IColumn-II
    A. PressureE. $$ML^{-1} T^{-2}$$
    B. StressF. $$Nm^{-2}$$
    C. Energy per unit
    volume
    G.  $$M^{0} L^{0} T^{0}$$
    D. StrainH. $$Jm^{-3}$$
    Solution
    Stress $$= Pressure = \dfrac{force}{area}=\dfrac{N}{M^{2}}=\dfrac{M^{1}L^{1}T^{-2}}{L^{2}}=M^{1}L^{-1}T^{-2}$$

    Energy per unit volume $$= \dfrac{M^{1}L^{2}T^{-2}}{L^{3}}=M^{1}L^{-1}T^{-2}$$

    Strain $$= \dfrac{\Delta l}{l}=M^{0}L^{0}T^{0}$$
    Hence, A, B, & C each has E, F, & H options dimensionally
    while D has only G.
    Hence, option A is correct.
  • Question 5
    1 / -0
    If $$L$$ is the inductance, $$'i'$$ is current in the circuit, $$\dfrac { 1 }{ 2 } { Li }^{ 2 }$$ has the dimensions of:
    Solution
    $$L \rightarrow M{ L }^{ 2 }{ I }^{ -2 }{ T }^{ -2 }$$
    $$ I\rightarrow I$$
    $${ LI }^{ 2 } = (M{ L }^{ 2 }{ I }^{ -2 }{ T }^{ -2 }){ I }^{ 2 }= M{ L }^{ 2 }{ T }^{ -2 } \rightarrow  (unit \ of \ work)$$
    $$Power  =  f\times v = ML{ T }^{ -2 } \times  L{ T }^{ -1 }\quad =\quad M{ L }^{ 2 }{ T }^{ -3 }$$
    $$ Pressure = f/A = \dfrac { ML{ T }^{ -2 } }{ { L }^{ 2 } }  = { ML }^{ -1 }{ T }^{ -2 }$$
    $$force = { M }^{ 1 }{ L }^{ 1 }{ T }^{ -2 }$$
  • Question 6
    1 / -0
    The units of force, velocity and energy are 100 dyne, 10 $${cm s }^{ -1 }$$ and 500 erg respectively. The units of mass, length and time are:
    Solution
    Force $$= 100 dyne= M^{1}L^{1}T^{-2}$$
    $$velocity = 10 \dfrac{cm}{s}=LT^{-1}$$
    $$Energy = 500 erg =M^{1}L^{2}T^{-2}\Rightarrow \dfrac{energy}{force}=L^{1}=\dfrac{500}{100}=5cm$$
    $$\Rightarrow \dfrac{energy}{(velocity)^{2}}=M^{1}=\dfrac{500}{(10)^{2}} =5gm \Rightarrow T=0.5\ sec$$
  • Question 7
    1 / -0
    The unit of an electrical parameter whose formula is $$[M^{1}L^{2}T^{-3}A^{-2}]$$ is:

    Solution
    $$  V  = IR$$

    So, $$ [R] = [\dfrac{V}{I}]$$$$ = [\dfrac{W}{QI} ]= [\dfrac{W}{I^{2} T}] = [\dfrac{F \times S}{I^{2} \times T}]  = [\dfrac{m \times a \times S}{I^{2} \times T}]$$$$ = [\dfrac{M(\dfrac{L}{T^{2}}) \times L}{A^{2} \times T}]$$
     
    $$\Rightarrow [\Omega]= [ML^{2}T^{-3}A^{-2}]$$
  • Question 8
    1 / -0
    If $$e, { \epsilon}_{0}, h$$ and $$c$$ respectively represents electric charge, permittivity of free space, Planck's constant and speed of light. The dimension of $$\dfrac{e^2 }{ 4\pi \epsilon_0 hc} $$ is :
    Solution
    Planck's constant (h) has joule-seconds unit, dimensions are $$=[ML^2T^{-1}]$$
    Electron charge (e) will have $$[TI]$$
    Dimension for $${ \varepsilon  }_{ 0 }$$ is $$[M^{-1}L^{-3}T^{4}I^{2}]$$
    Dimensions for $$\dfrac { e^{ 2 } }{ 4\pi { \varepsilon  }_{ 0 }hc } $$ will be $$[M^0L^0T^0]$$.
  • Question 9
    1 / -0
    The product of energy and time is called action. The dimensional formula for action is same as that for
    Solution
    $$ Energy   \times   Time  = \left ( M^{1}L^{2}T^{-2} \right )\times \left ( T^{1} \right )= M^{1}L^{2}T^{-1}$$

    $$ Force  \times   Velocity  = \left ( M^{1}L^{1}T^{-2} \right )\times \left ( L^{1}T^{-1} \right )  = M^{1}L^{2}T^{-3}$$

    $$ Impulse  \times   distance  =  \left ( M^{1}L^{1}T^{-1} \right )\times  \left ( L^{1} \right )   = M^{1}L^{2}T^{-1}$$

    $$ Power  = M^{1}L^{2}T^{-3}$$

    $$ Angular \ Energy = M^{1}L^{1}T^{-2} $$
  • Question 10
    1 / -0
    A highly rigid cubical block $$A$$ of small mass $$M$$ and side $$L$$ is fixed rigidly on to another cubical block of same dimensions and of low modulus of rigidity $$\eta$$ such that the lower face of $$A$$ completely covers the upper face $$B$$. The lower face of $$B$$ is rigidly held on a horizontal surface. A small force $$F$$ is applied perpendicular to one of the side face of $$A$$. After the force is withdrawn, block $$A$$ executes small oscillations, the time period of which is given by :
    Solution
    Modulus of rigidity $$\eta =\dfrac { E }{ A\theta  } $$

    We know, $$A={ L }^{ 2 }$$

    For small $$\theta$$, 
    $$\theta =\dfrac { x }{ L } $$

    Restoring force $$F=-\eta AB$$

                               $$F=-\eta Lx$$

    Acceleration, $$a=-\dfrac { \eta L }{ M } x\qquad \rightarrow (1)\\$$
                           $$ a=\dfrac { F }{ m } $$

    Here, $$\alpha \propto -x\\$$

    $$\therefore$$here we have SHM,

    Hence the time period is given by

    $$T=2x\sqrt { \left| \dfrac { x }{ a }  \right|  } \\ T=2\pi \sqrt { \dfrac { M }{ \eta L }  } $$

    where,
    $$a$$=acceleration and $$x$$=small deformation.


Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now