Self Studies

Units and Measurements Test - 59

Result Self Studies

Units and Measurements Test - 59
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The dimensional formula for Young's modulus is :
    Solution
    Young's modulus 
    $$ Y = \dfrac {stress}{strain} $$
    Dimension of $$ Y = \dfrac {ML^{-1} T^{-2} }{M^0L^0T^0} $$
    $$ = [ ML^{-1} T^{-2} ] $$
  • Question 2
    1 / -0
    The dimensional formula of modulus of elasticity is
    Solution
    Modules of elasticity  $$\displaystyle =\frac { stress }{ strain } $$
    Stress  $$\displaystyle =\frac { \left[ F \right]  }{ \left[ A \right]  } =\frac { \left[ { MLT }^{ -2 } \right]  }{ \left[ { L }^{ 2 } \right]  } =\left[ { ML }^{ -1 }{ T }^{ -2 } \right] $$
    Strain is a dimensionless quantity.
    So, modules of elasticity = $$\displaystyle \left[ { ML }^{ -1 }{ T }^{ -2 } \right] $$
  • Question 3
    1 / -0
    The quantity which has the same dimensions as that of gravitational potential is
    Solution
    Dimensions of gravitational potential
    $$=\dfrac{Dimension \,of\, work}{Dimension \,of\, mass}$$
    $$=\dfrac{[ML^2T^{-2}]}{[M]}=[L^2T^{-2}]$$
    and dimension of latent heat
    $$=\dfrac{Dimension \,of \,[Q]}{Dimension \,of\, [M]}$$
    $$=\dfrac{[ML^2T^{-2}]}{[M]}=[L^2T^{-2}]$$
  • Question 4
    1 / -0
    The frequency of vibration of the string is given by 
    $$v=\dfrac {p}{2l}\left [ \dfrac {F}{m} \right ]^{1/2}$$
    Here, p is the number of segments in the string and l is the length. The dimensional formula for m will be
    Solution
    $$v=\dfrac{p}{2l}\left [ \dfrac{F} {M}\right ]^{1/2}$$
    Squaring the equation on either side, we have
    $$v^2=\dfrac{p^2}{4l^2}\left ( \dfrac{F} {M}\right )$$
    $$m=\dfrac {P^2F}{4l^2v^2}$$
    $$[m]=\dfrac {[MLT^{-2}]}{[L^2][T^{-1}]^2}=[ML^{-1}T^0]$$
  • Question 5
    1 / -0
    The physical quantity that does not have the dimensional formula $$[ML^{-1}T^{-2}]$$ is
    Solution
    $$F=mass \times acceleration$$
    $$F= [M][LT^{-2}]=[MLT^{-2}]$$

    $$Pressure=Force/Area$$
    $$P=[MLT^{-2}][L^{-2}]=[ML^{-1}T^{-2}]$$

    $$Stress$$ is force per unit area therefore it's dimensional formula will be same as pressure.

    $$Modulus \ of \  elasticity=Fl/A \triangle l=[MLT^{-2}] [L][L^{-2}][L^{-1}]=[ML^{-1}T^{-2}]$$

    Hence $$D$$ is correct answer.
  • Question 6
    1 / -0
    The dimensional formula of $$\dfrac {1}{\mu_{0}\epsilon_{0}}$$ is
    Solution
    Velocity of $$EM$$ waves, $$v = \dfrac {1}{\sqrt {\mu_{0}\epsilon_{0}}}$$
    $$\Rightarrow = \dfrac {1}{\mu_{0}\epsilon_{0}} = v^{2}$$
    $$\therefore$$ Dimensional formula of $$\dfrac {1}{\mu_{0}\epsilon_{0}} = [M^{0}LT^{-1}]^{2}$$
    $$= [M^{0}L^{2}T^{-2}]$$.
  • Question 7
    1 / -0
    Number of particles is given by $$n=-D\cfrac { { n }_{ 2 }-{ n }_{ 1 } }{ { x }_{ 2 }-{ x }_{ 2 } } $$ crossing a unit area perpendicular to X-axis in unit time, where $${ n }_{ 1 }$$ and $${ n }_{ 2 }$$ are number of particles per unit volume for the value of $$x$$ meant to $${x}_{2}$$ and $${x}_{1}$$. Find dimensions of $$D$$ called as diffusion constant :
    Solution
    Given, number of particle passing from unit area in unit time $$=n$$
    $$=\cfrac { Number\quad of\quad particle }{ A\times t } =\cfrac { \left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right]  }{ \left[ { L }^{ 2 } \right] \left[ T \right]  } =\left[ { L }^{ -2 }{ T }^{ -1 } \right] $$
    Now from the given formula $$\left[ D \right] =\cfrac { \left[ n \right] \left[ { x }_{ 2 }-{ x }_{ 1 } \right]  }{ \left[ { n }_{ 2 }-{ n }_{ 1 } \right]  } =\left[ { L }^{ 2 }{ T }^{ -1 } \right] $$
  • Question 8
    1 / -0
    If $${ \varepsilon  }_{ 0 }$$ is the permittivity of free space and $$E$$ is the electric field, then the dimensions of $$\cfrac { 1 }{ 2 } { \varepsilon  }_{ 0 }{ E }^{ 2 }\quad $$ is
    Solution
    Here, $$\cfrac { 1 }{ 2 } { \varepsilon  }_{ 0 }{ E }^{ 2 }\quad $$ represetns energy per unit volume
    So the dimensions of
    $$\left[ { \varepsilon  }_{ 0 } \right] \left[ { E }^{ 2 } \right] =\cfrac { \left[ Dimensions\quad of\quad Energy \right]  }{ \left[ Dimensions\quad of\quad Volume \right]  } $$
    $$=\dfrac { \left[ M{ L }^{ 2 }{ T }^{ -2 } \right]  }{ \left[ { L }^{ 3 } \right]  } =\left[ M{ L }^{ -1 }{ T }^{ -2 } \right] $$
  • Question 9
    1 / -0
    For a circuit, L, C and R represent the inductance, capacitance and resistance. Then, the dimensional formula for $$C^2LR$$ is
    Solution
    The ratio of inductance L to resistance R is time constance T, hence, we have 
     $$\left [ \frac {L}{R} \right ]= T$$ and $$\sqrt {LC}=T$$
    Using these two relation we have 
    $$C^2LR=[C^2L^2]\times \left [ \frac {L}{R} \right ]=[T^4]\times \left [ \frac {1}{T} \right ]=[T^3]$$
  • Question 10
    1 / -0
    $$R,L$$ and $$C$$ represent the physical quantities resistance, inductance and capacitance respectively. Which one of the following combination has dimensions of frequency?
    Solution
    $$\dfrac{L}{R}$$ is defined as the time constant of the L-R circuit. So,  $$\dfrac{L}{R}$$ has the dimension of time. 
    Thus,  $$\dfrac{R}{L}$$ has the dimensions of frequency (because frequency is the reciprocal of time).
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now