Self Studies

Units and Measurements Test - 63

Result Self Studies

Units and Measurements Test - 63
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The dimensional formula of electric flux is:
    Solution

    Correct option is (B) $$\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$$

    Hint:  Electric flux is the measure of the electric field lines crossing the surface.

    Step1: Electric flux $$\phi=\int \vec{E} \cdot \vec{s}$$

    The dimension of $$\phi=$$ dimension fo $$\mathrm{E} \times$$ dimension of $$\mathrm{s}$$

    $$[\phi]=\left[\mathrm{M}^{1} \mathrm{~L}^{1} \mathrm{~T}^{-2}\right][\mathrm{AT}]^{-1}\left[\mathrm{~L}^{2}\right]=\left[\mathrm{M}^{1} \mathrm{~L}^{3} \mathrm{~T}^{-3} \mathrm{~A}^{-1}\right]$$

  • Question 2
    1 / -0
    If E, M, J and G denote energy, mass, angular momentum and gravitational constant respectively, then $$\frac{EJ^2}{M^5 G^2}$$ has the dimensions of 
    Solution

    Dimensional formula of:

    $$E  : [ML^{2}T^{-2}]\\$$

    $$J : [ML^{2}T^{-1}]\\$$

    $$G :  [M^{-1}L^{3}T^{-2}]\\$$

    Thus

    $$(E J ^{2})/(M^{5} G^{2}) = \dfrac{[ML^{2}T^{-2}][ML^{2}T^{-1}]^{2}}{M^{5} \times [M^{-1}L^{3}T^{-2}]^{2}} \\$$

    $$= \dfrac{[M^{3}L^{6}T^{-4}]}{[M^{3}L^{6}T^{-4}]}\\$$

    $$= [M^{0} L^{0} T^{0}]$$

    The above quantity is dimensionless. Angle is also a dimensionless quantity while others are having some dimensions.

     

    Thus the correct option is D.

  • Question 3
    1 / -0
    Force F is given in terms of time t and distance x by $$F = A \sin Ct + B \cos Dx$$. Then the dimensions of $$\dfrac {A}{B}$$ and $$\dfrac{C}{D}$$ are:
    Solution
    $$\textbf{Step 1: Dimensions of C and D}$$
               $$F = A \sin \, Ct + B \cos \, Dx$$
    Since the argument of trigonometric functions is the angle, which is dimensionless
             $$\therefore [Ct] = M^{0} L^{0} T^{0}$$
          $$\Rightarrow[CT^1] = M^{0} L^{0} T^{0}$$
          $$\Rightarrow [C] = T^{-1}$$                                                  $$....(1)$$

    Similarly
              $$[Dx] = M^{0} L^{0} T^{0}$$
        $$\Rightarrow$$   $$[DL^{1}] = M^{0} L^{0} T^{0}$$
        $$\Rightarrow$$    $$[D] = L^{-1}$$                                                $$....(2)$$

    $$\textbf{Step 2: Using principle of homogeneity}$$
    Since the value of trigonometric functions is dimensionless,
    $$\therefore$$ Using the principle of homogeneity, Dimension of $$A$$ and $$B$$ is same as Force $$F$$

    $$[A] = [B] = MLT^{-2}$$                                          $$....(3)$$

    $$\textbf{Step 3: Final calculation}$$
    From equation $$(3)$$
      $$\dfrac{A}{B} = M^{0} L^{0} T^{0}$$

    From equation $$(1)$$ and $$(2)$$
      $$\dfrac{C}{D} = M^{0} L T^{-1}$$

    Hence Option $$C$$ is correct.
  • Question 4
    1 / -0
    The radius of the earth is $$6.37 \times 10^6 m$$ and its mass is $$5.975 \times 10^{24} kg$$. Find the earth's average density to appropriate significant figures.
    Solution
    $$\begin{array}{l}\text { radius }=6.37 \times 10^{6}\mathrm{~m} \\\text { Volume }=\frac{4}{3} \pi r^{3}\\V=\frac{4}{3} \times \pi \times\left(6.37 \times 10^{6}\right)^{3} \\\text { Mass }=5.975 \times 10^{24}\mathrm{~kg} \\\text { density }(\rho)=\frac{\operatorname{mass}(\mathrm{m})}{V}\end{array}$$
    $$\begin{aligned}\rho &=\frac{5.975 \times 10^{24}}{4\times\pi\times\left(6.37\times10^{6}\right)^{3}}\\&=5.52\times10^{3}\mathrm{kgm}^{-3}\end{aligned}$$
  • Question 5
    1 / -0
    In the relation $$y = r sin (\omega t - kx)$$, the dimensions of $$\omega/k$$ are
    Solution
    $$y=rsin\left( wt-kx \right) $$
    $$\left( wt-kr \right) $$ is angle so it is dimensionless.
    $$\left[ wt \right] =\left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right] \quad \quad \left[ kx \right] =\left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right] $$
    $$w=\dfrac { 1 }{ t } $$
    $$\left[ w \right] =\left[ { T }^{ -1 } \right] $$                                    $$k=\dfrac { 1 }{ x } $$
    $$\dfrac { w }{ k } =\dfrac { \left[ { T }^{ -1 } \right]  }{ \left[ { L }^{ -1 } \right]  } =\left[ { M }^{ 0 }{ LT }^{ -1 } \right] $$         $$k=\left[ { L }^{ -1 } \right] $$
  • Question 6
    1 / -0
    With due regard to significant figures, add the following:
    a. 953 and 0.324
    b. 953 and 0.625
    c. 953.0 and 0.324
    d. 953.0 and 0.374
    Solution
    a.  $$953+0.324=953.324\approx \boxed { 953 } $$
    b.  $$953+0.625=953.625\approx \boxed { 954 } $$
    c.  $$953.0+0.324=953.324\approx \boxed { 953.3 } $$
    d.  $$953.0+0.374=953.374\approx \boxed { 953.4 } $$
  • Question 7
    1 / -0
    A physical quantity $$x$$ depends on quantities $$y$$ and $$z$$ as follows: $$x = Ay + B \tan (C_z)$$, where $$A, B$$ and $$C$$ are constants. Which of the followings do not have the same dimensions?
    Solution
    Given $$x=Ay+Btan\left( { C }_{ z } \right) $$
    Each term in a equation has same dimensions.
    $$\Rightarrow Dim\left( x \right) =Dim\left( Ay \right) =Dim\left( B \right) $$
    $$\Rightarrow$$ $$x$$ and $$A$$ cannot have same dimension.
  • Question 8
    1 / -0
    If $$L$$ and $$R$$ denote inductance and resistance, respectively, then the dimensions of $$L/R$$ are
    Solution
    We know $$E=\dfrac { 1 }{ 2 } L{ i }^{ 2 }\quad \Rightarrow \quad L=\dfrac { 2E }{ { i }^{ 2 } } $$
    $$\Rightarrow$$  dimension of $$L=\dfrac { { MLT }^{ -2 } }{ { Q }^{ 2 } } .{ T }^{ 2 }={ MLT }^{ 0 }{ Q }^{ -2 }$$
    Also we know $$E={ i }^{ 2 }RT\Rightarrow R=\dfrac { E }{ { i }^{ 2 }t } $$
    dimension of $$R=\dfrac { { MLT }^{ -2 } }{ { Q }^{ 2 } } .{ T }^{ -1 }={ MLT }^{ -1 }{ Q }^{ -2 }$$
    $$\therefore$$  $$dim\left( \dfrac { L }{ R }  \right) =\dfrac { { MLT }^{ 0 }{ Q }^{ -2 } }{ { MLT }^{ -1 }{ Q }^{ -2 } } =\left[ T \right] $$
  • Question 9
    1 / -0
    In the relation $$\dfrac{dy}{dt} = 2 \omega \sin (\omega t + \phi_0)$$, the dimensional formula for $$\omega t + \phi_0$$ is
    Solution
    The given ralation is:
    $$\dfrac { dy }{ dt } =2wsin\left( wt+{ \phi  }_{ 0 } \right) $$

    It is the equation for the velocity of the wave.

    Arguments of trignometric functions are dimension less 
    $$\Rightarrow \left( wt+\phi  \right) $$ has dimension $$\left[ { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } \right] $$.
  • Question 10
    1 / -0
    The following observations were taken for determining the surface tension of water by capillary tube method : diameter of capillary , $$D = 1.25 \times 10^{-2} m$$. Taking $$ g = 9.80 m s^{-2}$$ and using the relation $$T = (rgh/2) \times 10^3 Nm^{-1}$$. what is the possible error in measurement of surface tension T?
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now