Self Studies

Units and Measurements Test - 64

Result Self Studies

Units and Measurements Test - 64
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Write the dimensions of $$a \times b$$ in the relation. $$E = \dfrac{b - x^2}{at}$$, where $$E$$ is the energy, $$x$$ is the displacement, and $$t$$ is the time.
    Solution
    $$E=\dfrac { b-{ x }^{ 2 } }{ at } $$           $$E$$ is energy $$x$$ is displacement $$t$$ time
    $$E=\left[ { ML }^{ 2 }{ T }^{ -2 } \right] $$
    $$x=\left[ L \right] $$
    $$t=\left[ T \right] $$
    $$b$$ will have unit same $${ x }^{ 2 }$$
    $$b=\left[ { L }^{ 2 } \right] $$
    $$a=\left[ \dfrac { b-{ x }^{ 2 } }{ Et }  \right] =\dfrac { \left[ { L }^{ 2 } \right]  }{ \left[ { ML }^{ 2 }{ T }^{ -2 }\times T \right]  } =\left[ { M }^{ -1 }T{ L }^{ 0 } \right] $$
    $$a\times b=\left[ { L }^{ 2 } \right] \left[ { M }^{ -1 }{ L }^{ 0 }T \right] $$
              $$=\left[ { M }^{ -1 }{ L }^{ 2 }T \right] $$
  • Question 2
    1 / -0
    The percentage errors in the measurement of mass and speed are $$2\%$$ and $$3\%$$, respectively. How much will be the maximum error in the estimation of KE obtained by measuring mass and speed?
    Solution
    We know $$K=\dfrac { 1 }{ 2 } { mV }^{ 2 }$$

    $$\dfrac { \Delta K }{ K } =\dfrac { \Delta M }{ M } +\dfrac { 2\Delta V }{ V } $$

    $$\dfrac { \Delta K }{ K }=2$$%$$+2\times3$$%$$=(2+6)$$%$$=8$$%
  • Question 3
    1 / -0
    The mass of the liquid flowing per second per unit area of cross section of the tube if proportional to $$P^x$$ and $$v^y$$, where $$P$$ is the pressure difference and $$v$$ is the velocity then the relation between $$x$$ and $$y$$ is
    Solution
    Given $$m\alpha { P }^{ x }\times { V }^{ y }$$
    $$\left[ { ML }^{ -2 }{ T }^{ 0 } \right] ={ \left[ { ML }^{ -1 }{ T }^{ -2 } \right]  }^{ x }{ \left[ { M }^{ 0 }{ LT }^{ 1 } \right]  }^{ y }$$
    $$x=1$$ } Comparing coefficients
    $$-2=-x+y$$  and  $$-1=-2x-y$$
                                      $$-2=-4x-2y$$
    $$0=\left( -4x-2y \right) -\left( -x+y \right) $$
    $$0=-3x-3y$$
    $$\Rightarrow$$  $$3x=-3y$$  $$\Rightarrow$$  $$\boxed { x=-y } $$.
  • Question 4
    1 / -0
    If frequency $$F$$, velocity $$V$$, and density $$D$$ are considered fundamental units, the dimensional formula for momentum will be
    Solution
    Momentum $$=[F]^a [V]^b [D]^c$$

    $$\implies [MLT^{-1}]=[T^{-1}]^a [LT^{-1}]^b[ML^{-3}]^c$$

    Comparing both sides,

    $$c=1$$

    $$b-3c=1$$

    $$\therefore b=4$$

    Also,

    $$a+b=1$$

    $$\therefore a=-3$$

    Therefore,

    Momentum $$=[F]^{-3}[V]^4[D]^1=DV^4F^{-3}$$
  • Question 5
    1 / -0
    If the velocity of light $$C$$, the universal gravitational constant $$G$$, and Planck's constant $$h$$ are chosen as fundamental units, the dimension of mass in this system are
    Solution
    Speed of light $$C=\left[ { LT }^{ -1 } \right] $$
    gravitational constant $$G=\left[ { M }^{ -1 }{ L }^{ 3 }{ T }^{ -2 } \right] $$
    planck's constant $$h={ ML }^{ 2 }{ T }^{ -1 }$$

    Let $$M={ C }^{ x }{ G }^{ y }{ h }^{ z }$$
    $$\left[ M \right] ={ \left[ { LT }^{ -1 } \right]  }^{ x }{ \left[ { M }^{ -1 }{ L }^{ 3 }{ T }^{ -2 } \right]  }^{ y }{ \left[ { ML }^{ 2 }{ T }^{ -1 } \right]  }^{ z }$$

    $$\left[ M \right] =\left[ { M }^{ -y+z }{ L }^{ x+3y+2z }{ T }^{ -x-2y-z } \right] $$

    $$-y+z=1,\quad x+3y+2z=0,\quad -x-2y-z=0$$

    On solving, we get
    $$x=\dfrac { 1 }{ 2 } ;\quad y=\dfrac { -1 }{ 2 } ;\quad z=\dfrac { 1 }{ 2 } $$
    So, dimension of $$M=\left[ { C }^{ 1/2 }{ G }^{ -1/2 }{ h }^{ 1/2 } \right] $$
  • Question 6
    1 / -0
    The number of significant figures in $$5.69 \times 10^{15}$$kg is
    Solution
    No. of significant figures in $$\underbrace { 5.69 } \times { 10 }^{ 15 }$$ Kg is $$3$$.
                                               Digits that cannot meaning to measurement and measurement resolution.
  • Question 7
    1 / -0
    The potential energy of a particle varies with distance $$x$$ as $$U = \dfrac{Ax^{1/2}}{x^2 + B}$$, where A and B are constants. The dimensional formula for A x B is:
    Solution
    Given,  $$U=\dfrac { { Ax }^{ 1/2 } }{ x^{ 2 }+B } $$
    $${ x }^{ 2 }+B$$ should have some dimension $$\Rightarrow$$  $${ L }^{ 2 }=dim\left( B \right) $$
    $$dim\left( A \right) =dim\left( \dfrac { U\times \left( { x }^{ 2 }+B \right)  }{ { x }^{ 1/2 } }  \right) =\dfrac { \left[ { ML }^{ 2 }{ T }^{ -2 } \right] \left[ { L }^{ 2 } \right]  }{ { L }^{ 1/2 } } $$
                    $$={ ML }^{ 7/2 }{ T }^{ -2 }$$
    $$dim\left( A\times B \right) =\left[ { ML }^{ 7/2 }{ T }^{ -2 } \right] \left[ { L }^{ 2 } \right] =\left[ { ML }^{ 11/2 }{ T }^{ -2 } \right] $$
  • Question 8
    1 / -0
    The time dependence of a physical quantity $$P$$ is given by $$P = P_0e^{-\alpha t^2}$$, where $$\alpha$$ is a constant and t is time. Then constant $$\alpha$$ is / has
    Solution
    $$P={ P }_{ 0 }{ e }^{ -{ \alpha t }^{ 2 } }$$
    $${ \alpha t }^{ 2 }$$ must be dimension less in $${ e }^{ -{ \alpha t }^{ 2 } }$$
    $$\Rightarrow \quad dim\left( { \alpha t }^{ 2 } \right) ={ M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 }\Rightarrow dim\left( \alpha  \right) =\dfrac { { M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 } }{ { T }^{ 2 } } $$
    $$\therefore$$  $$dim\left( \alpha  \right) ={ M }^{ 0 }{ L }^{ 0 }{ T }^{ -2 }$$
  • Question 9
    1 / -0
    The position x of a particle at time t is given by $$x = \dfrac{V_0}{a}(1 - e^{-at})$$, where $$V_0$$ is constant and $$a > 0$$. The dimensions of $$V_0$$ and $$a$$ are
    Solution
    $$x=\dfrac { { V }_{ 0 } }{ a } \left( 1-{ e }^{ -at } \right) $$
    at should be dimensions $$\Rightarrow Dim\left( a \right) =\dfrac { 1 }{ Dim\left( T \right)  } ={ T }^{ -1 }$$
    $$x$$ is position $$\Rightarrow dim\left( x \right) ={ M }^{ 0 }L{ T }^{ 0 }=dim\left( \dfrac { { V }_{ 0 } }{ a }  \right) $$
    $$\therefore$$  $$dim\left( { V }_{ 0 } \right) ={ M }^{ 0 }L{ T }^{ -1 }$$
  • Question 10
    1 / -0
    The specific resistance $$\rho$$ of a circular wire of radius r, resistance R, and length l is given by $$\rho = \pi r^2 R/l$$. Given: $$r = 0.24\pm 0.02 cm, R = 30 \pm 1 \Omega,$$ and $$l=4.80\pm 0.01cm.$$ The percentage error in $$\rho$$ is nearly:
    Solution
    The specific resistance is given as :
    $$\rho =\dfrac{\pi r^{2}R}{l}$$

    Differentiating both sides given (in terms of relative error ):-
    $$\displaystyle \frac{\Delta P}{\rho }=2\frac{\Delta r}{r}+\frac{\Delta R}{R}+\frac{\Delta l}{l}\rightarrow (2)$$

    From given data,
    $$\displaystyle r=0.24\pm 0.02 cm \Rightarrow \frac{\Delta r}{r}=\frac{0.02}{0.24}=\frac{1}{12}$$
    $$\displaystyle R=30\pm 1\Omega \Rightarrow \frac{\Delta R}{R}=\frac{1}{30}$$
    $$\displaystyle l=4.80\pm 0.01cm\Rightarrow \frac{\Delta L}{L}=\frac{0.07}{4.80}=\frac{1}{480}$$

    Hence from (1),
    $$\displaystyle \frac{\Delta P}{\rho }=2\times \frac{1}{12}+\frac{1}{30}+\frac{1}{480}=20.2\%$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now