Self Studies

Units and Measurements Test - 67

Result Self Studies

Units and Measurements Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Dimensional equation of universal constant of gravitation is:
    Solution

  • Question 2
    1 / -0
    In the context of accuracy to measurement and significant figures in expressing results of experiment, which of the following is/are correct?
    (1) Out of the measurements 50.14 cm and 0.00025 ampere, the first one has greater accuracy.
    (2) If one travels 478 km by rail and 397 m. by road, the total distance traveled is 478 km.
    Solution
    Significant figures are the number of digits in a value, often a measurement, that contribute to the degree of accuracy of the value. We start counting significant figures at the first non-zero digit.
    Since for $$50.14cm$$
    Now, the significant number$$=4$$
    and for  $$0.00025$$
    Significant number $$=2$$
    Both are correct
  • Question 3
    1 / -0
    The dimensions of planck's constant equal to that of 
    Solution
    Planck's constant, symbolized $$h$$, relates the energy in one quantum (photon) of electromagnetic radiation to the frequency of that radiation.

    $$h=\dfrac Ev=\dfrac{[ML^2T^{-2}]}{[T^{-1}]}=[ML^2T^{-1}]$$

    Angular momentum $$=$$ Moment of inertia $$\times$$ Angular velocity (Angular momentum)

    $$=[ML^2][T^{-1}]=[ML^2T^{-1}]$$

    So, here we can see that both the Planck's constant and Angular momentum have the same dimensions.
  • Question 4
    1 / -0
    In the formula : y = a sin ( at - b), where y - position, t - time and A, a, b are constants. What will be the dimensional formula of $$\frac{b}{a}$$?
    Solution
    Dimensions of at=Dimension of b
    $$\left[ a \right] \left[ t \right] =\left[ b \right] \\ \dfrac { b }{ a } =t\\ =T$$
  • Question 5
    1 / -0
    The radius of a sphere is $$(2.6 \pm 0.1)$$ cm. The percentage error in its volume is
    Solution
    Given,
    Radius$$ = \left( {2.6 \pm 0.1} \right)cm$$
    $$V = \frac{4}{3}\pi {r^3} = \frac{4}{3} \times 3.14 \times {\left( {2.6} \right)^3} = 73.6\,c{m^3}$$
    Now, in error
    $$\begin{array}{l} \frac { { \Delta V } }{ V } =3\left( { \frac { { \Delta r } }{ r }  } \right)  \\ \Delta V=v\propto 3\left( { \frac { { \Delta r } }{ r }  } \right)  \\ \Delta V=73.6\propto 3\left( { \frac { { 0.1 } }{ { 2.6 } }  } \right)  \\ \Delta V=8.49\, c{ m^{ 3 } } \\ \frac { { \Delta V } }{ V } \times 100=\frac { { 8.49 } }{ { 73.6 } } \times 100 \end{array}$$
                       $$=11.53$$%
    $$\therefore$$ Option $$C$$ is correct.
  • Question 6
    1 / -0
    The dimensions of emf in MKS is:
    Solution
    The emf across an inductor is given by:
    $$ e = -L\dfrac {di}{dt} $$

    $$e = \big[ {ML^{2}}{T^{-2}}{A^{-2}} \big] \big[ \dfrac {A}{T} \big] $$

    $$e = \dfrac {{ML^{2}}{T^{-2}}}{A^{-1}{T}} $$

    $$e = {ML^{2}}{T^{-2}}{Q^{-1}}$$
  • Question 7
    1 / -0
    The dimension of $$\left( \dfrac { 1 }{ 2 }  \right) { \varepsilon  }_{ 0 }{ E }^{ 2 }$$ is($${ \varepsilon  }_{ 0 }$$: permittivity of free space, Electric field)
    Solution
    As we know that 
    Energy Density$$= \dfrac{energy}{volume}= \left( \dfrac { 1 }{ 2 }  \right) { \varepsilon  }_{ 0 }{ E }^{ 2 }$$

    Hence , 
    Dimesion of $$\left( \dfrac { 1 }{ 2 }  \right) { \varepsilon  }_{ 0 }{ E }^{ 2 }$$ is,     =$$\dfrac{[ML^2T^{-2}]}{L^3}= ML^{-1}T^{-2}$$
  • Question 8
    1 / -0
    Write down the significant figures in the following
    1. $$5238$$ N
    2. $$4200 $$kg
    Solution
    All non-zero digits are significant and last zeros are not considered as significant.
    (a) : The given number $$5238$$ has four significant figures.
    (b) : The given number $$4200$$ has two significant figures.
  • Question 9
    1 / -0

    The dimension of the magnetic field intensity B is  

    Solution
    $$F=qVB\sin { \theta  } $$

    $$\left[ F \right] =\left[ ML{ T }^{ -2 } \right] $$

    $$\left[ V \right] =\left[ L{ T }^{ -1 } \right] $$

    $$\left[ q \right] =\left[ AT \right] $$

    $$\sin \theta =$$ dimensionless

    $$\left[ B \right] =\cfrac { \left[ F \right]  }{ \left[ q \right] \left[ V \right]  } $$

    $$=\cfrac { \left[ ML{ T }^{ -2 } \right]  }{ \left[ AT \right] \left[ L{ T }^{ -1 } \right]  } $$

    $$=\left[ M{ L }^{ 0 }{ T }^{ -2 }{ A }^{ -1 } \right] $$

    $$\left[ B \right] =\left[ M{ T }^{ -2 }{ A }^{ -1 } \right] $$
  • Question 10
    1 / -0
    The dimension of combination $$\dfrac{L}{CVR}$$ are same as dimensions of 
    Solution
    Dimension of $$Resistance = \dfrac{Potential \,Difference}{Current} = \dfrac{ML^2T^{-3}A^{-1}}{ A} = [ML^2T^{-3}A^{-2}[$$

    Dimension of $$Capacitance = \dfrac{Charge}{ Potential\, Difference} = \dfrac{AT}{ML^2T^{-3}A^{-1}} = [M^{-1}L^{-2}T^4A^2[$$

    Dimension of $$Self Inductance [L]=\dfrac {[\phi]}{[I]}= \dfrac{MT^{−2}L^2A^{−1}}{ A} = [ML^2T^{-2}A^{-2}[$$

    Dimension of $$Voltage=\dfrac{Energy}{Charge}=\dfrac{[ML^2T^{-2}]}{AT}=[ML^2T^{-3}A^{-1}]$$

    $$[\dfrac{L}{CVR}]=\dfrac{[ML^2T^{-2}A^{-2}]}{[M^{-1}L^{-2}T^4A^2][ML^2T^{-3}A^{-1}][ML^2T^{-3}A^{-2}]}=[A^{-1}]$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now