Self Studies

Units and Measurements Test - 68

Result Self Studies

Units and Measurements Test - 68
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Dimension of $$\epsilon_0$$ are
    Solution

    The electrostatic force is given as,

    $$F = \dfrac{{{Q_1}{Q_2}}}{{4\pi {\varepsilon _0}{R^2}}}$$

    $${\varepsilon _0} = \dfrac{{{Q_1}{Q_2}}}{{4\pi F{R^2}}}$$

    Dimensions of $${\varepsilon _0}$$ are,

    $$ = \dfrac{{{A^2}{T^2}}}{{ML{T^{ - 2}} \times {L^2}}}$$

    $$ = \dfrac{{{A^2}{T^4}}}{{M{L^3}}}$$

    $$ = {M^{ - 1}}{L^{ - 3}}{T^4}{A^2}$$

  • Question 2
    1 / -0
    Which of the following is dimensionally incorrect ?
    Solution
    A> We know acceleration a=rate of change of velocity
    $$a=\dfrac{v-u}{t}$$ where v=final velocity and u = initial velocity and t= time
    Thus we can rewrite the above equation as,
    $$u=v-at$$
    $$[LT^{-1}]=[LT^{-1}]-[LT^{-2}][T]$$
    $$[LT^{-1}]=[LT^{-1}]$$       (Dimensionally correct)

    B> From equation of motion we get displacement
    $$s=ut+\dfrac{1}{2}a{t}^{2}$$
    $$s-ut=\dfrac{1}{2}a{t}^{2}$$
    $$[L]-[LT^{-1}][T]=[LT^{-2}][T^2]$$
    Here also, LHS =RHS

    C>The equation $$u^2=2a(gt-1)$$
    Substituting the dimensions:
    $$[LT^{-1}]^2=[LT^{-2}]([LT^{-2}][T])$$
    $$[L^2T^{-2}]=[L^2T^{-3}]$$
    LHS is not equal to RHS.

    D> From equation of motion,
    $${v}^{2}={u}^{2}+2as$$
    $${v}^{2}-{u}^{2}=2as$$
    $$[LT^{-1}]^2-[LT^{-1}]^2=[LT^{-2}][L]$$
    So, LHS=RHS

    Whereas the dimensions of the equation are not the same on the LHS and RHS.
    Thus option C is incorrect 
  • Question 3
    1 / -0
    The dimensions of energy per unit volumes are the same as those of :
    Solution
    The dimension of energy per unit volume is equal to the dimension of pressure.

    Firstly, the dimension of energy is : $$[ML^2T^{−2}]$$

    The dimension of volume: $$[L^3]$$

    The dimension of pressure : $$[L^{-1}M T^{-2}]$$

    Now, $$\dfrac{energy}{volume} =  \dfrac{[ML^2T^{−2}]}{[L^3]} =  [L^{-1}M T^{-2}]$$

  • Question 4
    1 / -0
    If temperature of sun is decreased by $$1\%$$ then the value of solar constant will change by
    Solution
    Solar constant $$=G=\sigma T^4\left[\cfrac{4\pi R^2}{4\pi O^2}\right]$$
    $$\therefore$$ change of G w.r.t $$O$$ on both sides
    $$\triangle G=4\sigma T^3 \triangle T \left[\cfrac{4\pi R^2}{4\pi O^2}\right]$$
    $$\cfrac{\triangle G}{G}=\cfrac{4\triangle T}{T}=-4\%$$
  • Question 5
    1 / -0
    Pressure P varies as $$P=\cfrac { \alpha  }{ \beta  } exp\left( \cfrac { -\alpha  }{ { K }_{ B }\theta  } Z \right) $$ where Z denotes distance. $${ K }_{ B }$$ Boltzman's constant.$$\theta $$ temperature and $$\alpha ,\beta$$ are constants.Derive the dimensions of $$\beta $$
    Solution
    $$\dfrac { \alpha Z }{ { K }_{ B }\theta  } ={ M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 }{ K }^{ 0 }\\ \alpha =\dfrac { { K }_{ B }\theta  }{ Z } =\dfrac { \left[ M{ L }^{ 2 }{ T }^{ -2 }{ K }^{ -1 } \right] \left[ K \right]  }{ \left[ L \right]  } \\ \alpha =ML{ T }^{ -2 }\\ \left[ P \right] =\dfrac { \left[ \alpha  \right]  }{ \left[ \beta  \right]  } \\ \beta =\dfrac { \alpha  }{ P } =\dfrac { ML{ T }^{ -2 } }{ M{ L }^{ -1 }{ T }^{ -2 } } ={ M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 }\\ $$
    Ans: $${ M }^{ 0 }{ L }^{ 0 }{ T }^{ 0 }$$
  • Question 6
    1 / -0
    The dimensional formula of angular velocity $$\left(\omega=\cfrac{v}{r}\right)$$ is
    Solution
    The angular velocity of a body is given by:
    $$\omega=\cfrac{V}{r}$$

    The dimension of $$V=[LT^{-1}]$$
    The dimension of $$r=[L]$$

    $$\omega=\cfrac{LT^{-1}}{L}=T^{-1}$$

    $$\omega=M^0L^0T^{-1}$$


  • Question 7
    1 / -0
    Pressure P varies as $$P=\dfrac{\alpha}{\beta}$$ exp$$(\dfrac{-\alpha}{K_B \theta}Z)$$ where Z denotes distance,$$K_B$$ Boltzman's constant,$$\theta$$ absolute temperature and $$\alpha,\beta$$ are constants.Derive the dimensions of $$\beta$$
    Solution
    $$P=\dfrac{\alpha}{\beta}$$ exp$$(\dfrac{-\alpha}{k_B \theta}Z)$$
    Since the terms inside the exponential do not have any dimension,we can find out the dimension of $$\alpha$$
    $$\dfrac{\alpha \times L' \times k}{J  \times k}$$
    $$\alpha$$ has dimension of $$\dfrac{J}{L'}=\dfrac{ML^2 T^{-2}}{L'}=ML T^{-2}$$
    For $$\dfrac{\alpha}{\beta}$$ to have dimension of pressure ,i.e $$ML^{-1}T^{-2}$$
    $$\beta$$ should have the dimension $$L^2$$ i.e,$$M^0L^2T^0$$
  • Question 8
    1 / -0
    If there is a positive error of $$50\%$$ in the measurement of velocity of a body, then the error in the measurement of kinetic energy is :
    Solution

    Given that,

    $$\dfrac{\Delta v}{v}\times 100$$ is the % error in velocity = 50%

    Kinetic energy $$K.E=\dfrac{1}{2}m{{v}^{2}}$$

    Error in the kinetic energy

    $$\dfrac{\Delta K.E}{K.E}\times 100=m\times 2\dfrac{\Delta v}{v}\times 100$$

    $$m$$ is as a constant

    Now, percentage error

      $$ \dfrac{\Delta K.E}{K.E}\times 100=2\dfrac{\Delta v}{v}\times 100 $$

     $$ \dfrac{\Delta K.E}{K.E}\times 100=2\times 50$$% 

     $$ \dfrac{\Delta K.E}{K.E}\times 100=100$$%

    Hence, the error in the measurement of kinetic energy is $$100$$%

     


  • Question 9
    1 / -0
    A student uses a metre scale, measuring upto $$1\ mm$$, to measure the length an breadth of a retangular plate. He finds that length$$=5.7\ cm$$ and breadth $$=3.4\ cm$$. What is the percentage error in the area of the plate?
    Solution
    $$ \begin{array} \text { Given } \rightarrow  \text { Measuring scale with least count } 1 \mathrm{~mm} \\ \text { length }=5.7 \mathrm{~cm}=57 \mathrm{~mm} \\ \text { Breadth }=3.4 \mathrm{~cm}=34 \mathrm{~mm} \end{array} $$
     $$ \begin{aligned} \text { Now } \rightarrow \text { Area } &=\text { Length } \times \text { Bredth. } \\ A &=l \times b=57 \times 34=1938 \mathrm{~mm}^{2} \end{aligned} $$ 
    $$ \begin{array}{l} \text { Using error analysis } \rightarrow \\ \text { Take logarithm both sides } \\ \qquad \log A=\log (l)+\log (b) \end{array} $$ 
    $$ \begin{array}{l} \text { difterentiate both sides - } \\ \frac{d A}{A}=\frac{d l}{l}+\frac{d b}{b} \quad \Rightarrow d A=A\left[\frac{d l}{l}+\frac{d b}{b}\right] \end{array} $$
     $$ \frac{d A}{A}=1938\left[\frac{1}{57}+\frac{1}{34}\right]=0.047=4.7 \% $$
  • Question 10
    1 / -0
    A dimensionless quantity :
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now