Self Studies

Units and Measurements Test - 75

Result Self Studies

Units and Measurements Test - 75
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The dimension of $$ (\mu _{ 0 }\epsilon _{ 0 })^{-1/2} $$ are:
    Solution

  • Question 2
    1 / -0
    The electric field in a certain region is given by $$ \overrightarrow E=( \frac {K}{x^3}) \hat i $$. the dimension of K are:-
    Solution
    The electric field in the given region is $$\vec E=\dfrac{K}{x^3}\hat{i}$$

    The dimension for the electric field is $$[M^1\ L^1\ T^{-3}\ A^{-1}]$$

    In order to obtain the dimension of $$K$$, simplify the above expression:
    $$K=E\cdot x^3$$

    Here $$X$$ denotes the position. So, dimensions of $$x$$ are $$[L]$$.

    Simplify the above expression.
    $$K=[M^1\ L^1\ T^{-3}\ A^{-1}][L]^3$$

    $$\implies[M^1\ L^4\ T^{-3}\ A^{-1}]$$

    Option $$C$$ is correct.
  • Question 3
    1 / -0
    A thermometer reads 0$$^{o}$$C as 10 $$^{o}$$C and 100$$^{o}$$C as 90$$^{o}$$C then 
    Find the correct temperature if the thermometer reads 20$$^{o}$$C
    Solution
    Temperature on any scale can be easily converted into different scale by the following formula

    $$\dfrac{T - T_f}{T_b - T_f} = \text constant$$ 

    where 
    $$T$$ = Reading of thermometer 
    $$T_f $$ = Freezing point of water
    $$T_b $$ = Boiling Point of water

    So here we will equate the reading of two scale namely, thermometer and actual scale.  

    $$\dfrac{20 - 10}{90 - 10} = \dfrac{x - 0}{100 - 0}$$

    $$\dfrac{10}{80} = \dfrac{x}{100}$$

    $$x = 12.5 ^oC$$

  • Question 4
    1 / -0
    A particle is moving with a velocity $$35\ m/s$$ along positive x-axis.It's acceleration is towards negative X-axis with the magnitude $$4m/s^ {2}$$ then the distance covered by the particle in the $$9th$$ second:-
    Solution
    $$\begin{array}{l}\vec{u}=35 \mathrm{~m} /\mathrm{s}\hat{\imath} \\\vec{a}=4 \mathrm{~m} /\mathrm{s}^{2}\hat{\imath} \\S_{a}=u+\frac{1}{2} a(2 n-1)\end{array}$$

    $$\begin{aligned}S_{a} &=u+\frac{1}{2} a(2 \times 9-1) \\&\left.=35+\frac{1}{2} \times(4\right)\times(18-1) \\&=35+\frac{1}{2} \times(-68) \\&=35-34\\&=1\mathrm{~m}\mathrm{~}\mathrm{~}\end{aligned}$$
  • Question 5
    1 / -0
    The pair of physical quantities, that have difference dimensions is 
    Solution
    Planck's constant, symbolized h, relates the energy in one quantum (photon) of electromagnetic radiation to the frequency of that radiation.

    $$h=\dfrac Ev=\dfrac{[ML^2T^{-2}]}{[T^{-1}]}=[ML^2T^{-1}]$$

    Angular momentum $$=$$ Moment of inertia $$\times$$ Angular velocity (Angular momentum)

    $$=[ML^2][T^{-1}]=[ML^2T^{-1}]$$

    So, here we can see that both the Planck's constant and Angular momentum have the same dimensions.
  • Question 6
    1 / -0
    The vector sum of three forces having magnitudes $$ | \overrightarrow F_1 | = 100 N $$,  $$ | \overrightarrow F_2 | = 80 N $$ &  $$ | \overrightarrow F_3 | = 60 N $$ acting on a particle is zero. the angle between $$ \overrightarrow F_1$$  & $$ \overrightarrow F_2 $$ is nearly:-
    Solution
    $$\text { For equilibrium:} \\\begin{array}{c}\left|\vec{F}_{1}+\vec{F}_{2}\right|=\left|\vec{F}_{3}\right| \\\end{array}$$

    $$\begin{array}{c}\text { Squaring both side }\\\Rightarrow\left|\vec{F}_{1}+\vec{F}_{2}\right|^{2}=\left|\vec{F}_{3}\right|^{2}\\\Rightarrow\left|\vec{F}_{1}\right|^{2}+\left|\vec{F}_{2}\right|^{2}+2\left|F_{1}\right|\left|F_{2}\right|\cos\theta\\=\left|\vec{F}_{3}\right|^{2} \\\Rightarrow 100^{2}+80^{2}+2\times 100 \times 80\times\cos\theta\\=60^{2}\end{array}$$
    $$\begin{aligned}\Rightarrow \cos\theta&=\frac{12800}{16000} \\\Rightarrow \cos \theta&=\frac{4}{5}\end{aligned}$$

    $$\theta=37^{\circ}$$

  • Question 7
    1 / -0
    Two constant force $$ \overrightarrow F_1 and \overrightarrow F_2 $$ acts on a body.these forces displaces the body from point P(1, -2, 3) to Q (2, 3, 7 ) in 2s starting from rest.force $$\overrightarrow F_1 $$ is of magnitude 9 N and acting along vector $$ ( 2 \hat i - 2 \hat j + \hat k ) $$ . the positions are in meter. find work done by $$ \overrightarrow F_1 $$.
    Solution
    $$\begin{aligned}\vec{F}_{1}&=k(2\hat{i}-2\hat{\jmath}+\hat{k}) \\\vec{d}=&(2-1) \hat{1}+(3-(-2))\hat{j}\\&+(7-3) \hat{k} \\=&(1) \hat{1}+(5)\hat{j}+(4)\hat{k}\\\vec{W}_{1}=&\vec{F}_{1}\cdot\vec{d}\\&=k(2\hat{i}-2\hat{j}+\hat{k})\cdot(i+5\hat{j}+4\hat{k})......(i)\end{aligned}$$

    $$|\vec{F}_1|=9$$
    $$g=\sqrt{4 k^{2}+4 k^{2}+k^{2}}$$
    $$9=3 k$$
    $$k=3...(ii)$$
    $$\text{putting
    (ii) in (i)
    we get}$$
    $$\overrightarrow{W_{1}}=-12 \mathrm{~J}$$
  • Question 8
    1 / -0
    A force is given by $$F = at + b{t^2}$$, where $$t$$ is time, the dimensions of $$a$$ and $$b$$ are respectively :
    Solution
    $$\Rightarrow \ $$ Since $$F=at+bt^2---(1)$$
    $$\therefore $$ Dimension of $$ at$$ and $$bt^2$$ must be equal to force only.

    Hence $$[F]=[M^{1} L^{1} T^{-2}]---(2)$$

    $$F$$ from $$(1)$$ and $$(2)$$

    $$\Rightarrow \ [at]=a[T] =[F]$$

    $$\therefore \ a[T] =[M^{1} L^{1} T^{-2}]$$

    $$\therefore \ [a]=[M^{1} L^{1} T^{-3}]$$

    and per $$bt^2=b[T^{2}]=[M^{1} L^{1} T^{-2}]$$

    $$\therefore \ \boxed {[b]= [M^{1} L^{1} T^{-4}]}$$
  • Question 9
    1 / -0
    The radius of a sphere is measured to be $$(4.0 +2.0)$$ cm the maximum percentage error in the measurement of the volume of the sphere is 
    Solution
    Given,
    $$r=(4\pm0.2)cm$$
    $$\dfrac{\Delta r}{r}=\dfrac{0.20}{4}=0.05$$
    Volume, $$V=\dfrac{4}{3}\pi r^3$$
    $$\dfrac{\Delta V}{V}\times 100=3\dfrac{\Delta r}{r}\times 100=3\times 0.05\times 100=15$$%
    The correct option is B.
  • Question 10
    1 / -0
    If the constant of gravitation $$(G)$$, Planck's constant $$(h)$$ and the velocity of light $$(c)$$ be chosen as fundamental units. The dimension of the radius of gyration is
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now