Self Studies
Selfstudy
Selfstudy

Motion in A Straight Line Test - 29

Result Self Studies

Motion in A Straight Line Test - 29
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    (a) How long will a stone take to fall to the ground from the top of a building $$80  m$$ high and (b) what will be the velocity of the stone on reaching the ground? (Take $$g=10  m  {s}^{-2}$$)
    Solution
    a.) $$s=ut+0.5at^2$$
    $$80=0+0.5(10)t^2$$
    $$t=4\ s$$
    b.) $$v=u+at$$
       $$=10\times 4=40\ m/s$$
  • Question 2
    1 / -0
    A stone is just released from the window of a moving train moving along a horizontal straight track .When observed by a person on the ground,the stone will hit the ground following a
    Solution
    The stone will follow the motion of a projectile, because:
    It has a initial horizontal velocity, which is same as that of the train .it acquires  a vertical component under the force of gravity .
    Since it has a constant speed on horizontal direction and a constant acceleration in vertical direction, the trajectory is parabolic.
  • Question 3
    1 / -0
    A ball is thrown vertically upwards. It returns $$6  s$$ later. Calculate:$$(i)$$ the greatest height reached by the ball, and $$(ii)$$ the initial velocity of the ball. (Take $$g=10  m  {s}^{-2}$$)
    Solution

    The ball is thrown up and it returns in $$6 sec$$, 

    Time of accent = Time of decent

    So, time to reach the highest point $$=6/2 = 3 s$$

     By 2nd equation of motion

    $$s = ut + \dfrac{1}{2}gt^{2}$$

     To calculate height, consider motion of the ball from highest point to the ground

    $$H = \dfrac{1}{2}gt^{2} = \dfrac{1}{2} \times 10 \times 3^{2} =45\ m$$

     To calculate projection velocity, consider motion of the ball from projection to return to the point of projection.

    $$0=ut-\dfrac{1}{2}gt^2$$

    $$u=10 \times 6/2=30\ m/s$$

  • Question 4
    1 / -0
    A ball is thrown from rear end of the compartment of train to the front end which is moving at a constant horizontal velocity. An observer $$A$$ sitting in compartment and another observer $$B$$ standing on the ground draw the trajectory. They will have
    Solution
    In vertical direction, ball has zero initial velocity but same value of $$g$$ w.r.t observer  A & B,so they will draw trajectory of equal vertical range
    But along horizontal direction, for observer $$A$$, ball is moving with velocity at which it is thrown w.r.t. train while for $$B $$, it is moving with a velocity equal to train $$+$$ velocity at which it is thrown w.r.t groundtrain
  • Question 5
    1 / -0
    A rocket is fired upward from the earth's surface such that it creates an acceleration of $$19.6  { m }{ { s }^{- 2 } }$$. If after $$5  s$$, its engine is switched off, the maximum height of the rocket from earth's surface would be
    Solution
    concept are attached, rest calculation is:
    Velocity when the engine is switched off
    $$v=19.6\quad *\quad 5\quad =\quad 9.8\quad { m }/{ s }$$
    $${ h }_{ max }={ h }_{ 1 }+{ h }_{ 2 }$$
    where, $${ h }_{ 1 }=\dfrac { 1 }{ 2 } a{ t }^{ 2\quad  }\& \quad { h }_{ 2 }=\dfrac { { v }^{ 2 } }{ 2a } $$

    $${ h }_{ max }=\dfrac { 1 }{ 2 } *19.6*5*5+\dfrac { 98*98 }{ 2*9.8 } $$

    $$ = 245+490=735 m$$

    $$B$$ is correct answer

  • Question 6
    1 / -0
    From a $$200  m$$ high tower, one ball is thrown upwards with speed of $$10  { m }/{ s }$$ and another is thrown vertically downwards at the same speed simultaneously. The time difference of their reaching the ground will be nearest to
    Solution
    The ball thrown upward will have zero  velocity in$$1\: s$$. It returns back to thrown point in another $$ 1\: s $$ with the same velocity as second. Thus the difference will be $$ 2\: s $$.
  • Question 7
    1 / -0
    A car starting from rest accelerates uniformly to acquire a speed $$20\ kmh^{-1}$$ in 30 min. The distance travelled by car in this time interval will be
    Solution
    Here, $$u = 0, v = 20 km/h, t = 30 min = 0.5 h$$

    Putting these values in $$v=u+at$$
    $$20 = 0+a*0.5$$
    We get, $$a = 40 km/h^2$$

    Putting the values in $$S = ut+\dfrac{1}{2}at^2$$

    $$S = 0*0.5+\dfrac{1}{2}*40*0.5^2$$

    $$S = 5 km$$
  • Question 8
    1 / -0
    A body moves from rest with uniform acceleration and travels 270 m in 3 s. Find the velocity of the body at 10 s after the start.
    Solution
    $$u=0, s=270 m, t=3 s$$
    $$s = ut+\dfrac{1}{2}at^2$$
    $$270 = 0\times 3+\dfrac{1}{2}\times a\times 3^2$$
    $$a= 60\ m/s^2$$

    Now putting the value of $$a$$ in $$v=u+at$$,
    Velocity after $$t=10 s$$ is given by
    $$v=0+60\times 10 = 600\ m/s$$
  • Question 9
    1 / -0
    A particle starts to move in a straight line from a point with velocity $$10 m s^{-1}$$ and acceleration $$-2.0 m s^{-2}$$. Find position(S) and velocity(v) of the particle at $$t = 5$$ s
    Solution
    Displacement at $$t =5 s$$ is

    $$ S= u \, t +\dfrac{1}{2} at ^2$$

    $$=10 \times 5 + \dfrac{1}{2} \times (-2.0) \times (5)^2$$

    $$=50-25=25 \, m$$

    i.e., after $$5 s$$, the particle will be at distance $$25 m$$ from the starting point.

    Velocity at $$t = 5 s$$ is

    $$v = u + at$$

    or $$v = 10+(-2)\times 5=0$$
  • Question 10
    1 / -0
    A ball is thrown vertically upwards from the top of a tower with an initial velocity of $$19.6  m  {s}^{-1}$$. The ball reaches the ground after $$5  s$$. Calculate :$$(i)$$ the height of the tower, $$(ii)$$ the velocity of ball on reaching the ground. Take $$g=9.8  m  {s}^{-2}$$.
    Solution
    $$s=ut+\dfrac{1}{2}at^2$$
       $$=19.6 \times 5 - \dfrac{1}{2} \times 9.8 \times 5^2$$
       $$=-24.5\ m$$

    Hence, height of tower $$= 24.5 m$$
    $$v=u+at$$
       $$=19.6-9.8\times 5=-29.4\ m/s$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now