The balls fall from $$A$$ on to incline and bounces off to $$B$$
$$B{ B }^{ ' }$$ is the normal to the incline at $$B$$.
Since it is smooth plane and collision l bouncing is elastic, the ball bounces at the same angle with the normal $$B{ B }^{ ' }$$
The velocity remains same
Hence the angle of projection of the ball w.r.t. horizontal$$=90°2\alpha $$
Velocity of the ball at $$B=\nu =\sqrt { 2gh } $$
Let $$B=(0,0)$$
The equation of the trajectory of the ball (parabolic path)
$$y=x\tan { \left( 90°-2\alpha \right) } -\cfrac { g{ x }^{ 2 } }{ 2{ \nu }^{ 2 } } \sec ^{ 2 }{ (90°-2\alpha ) } $$
Equations of the inclined plane: $$y=-x\tan { \alpha } $$
Ball hits the plane at
$$-x\tan { \alpha } =x\cot { 2\alpha } -\cfrac { g{ x }^{ 2 } }{ 4gh } \csc ^{ 2 }{ \left( 2\alpha \right) } $$
$$\therefore x=0$$ or $$x=\left( \cot { 2\alpha } +\tan { \alpha } \right) 4h\sin ^{ 2 }{ 2\alpha } $$
or $$c=\cfrac { 4h\left( 1-\tan ^{ 2 }{ \alpha } +2\tan ^{ 2 }{ \alpha } \right) \sin ^{ 2 }{ 2\alpha } }{ 2\tan { \alpha } } $$
$$x=4h\sin { 2\alpha } $$
$$y=-4h\sin { 2\alpha } \cdot \tan { \alpha } =-8h\sin ^{ 2 }{ 2\alpha } $$
Distance$$=\sqrt { { x }^{ 2 }+{ y }^{ 2 } } =8h\sin { \alpha } $$
The distance on inclined plane from $$B$$ (point of first bounce to point of second bounce)$$=\cfrac { x }{ \cos { \alpha } } =8h\sin { \alpha } $$