In this problem we have free fall motion
$$y(t)={ y }_{ initial }+{ v }_{ initial }t-4.9{ t }^{ 2 }$$
$$v(t)={ v }_{ initial }-9.8t$$
$${ v }^{ 2 }\left( t \right) -{ v }_{ initial }^{ 2 }=-19.6\left[ y(t)-{ y }_{ initial } \right] $$
The initial height of the object is $$0$$ (ground level)
$$\therefore y(t)={ v }_{ initial }t-4.9{ t }^{ 2 }\rightarrow 1$$
$$v(t)={ v }_{ initial }-9.8t\rightarrow 2$$
$${ v }^{ 2 }\left( t \right) -{ v }_{ initial }^{ 2 }=-19.6(t)\rightarrow 3$$
Case I: The object reaches the maximum height h at $${ t }_{ 0 }$$. At the maximum height the velocity of the object is zero and
$$y\left( { t }_{ 0 } \right) =h$$
$$h={ v }_{ initial }{ t }_{ 0 }-4.9{ t }_{ 0 }^{ 2 }\rightarrow 4$$
$$0={ v }_{ initial }-9.8{ t }_{ 0 }\rightarrow 5$$
$${ v }_{ initial }^{ 2 }=19.6h$$
Case II: Height of the object at
$$t=\cfrac { { t }_{ 0 } }{ 2 } $$
Substitute this time in equation $$1$$ and $$3$$
$$y\left( { { t }_{ 0 } }/{ 2 } \right) =\cfrac { { v }_{ initial }{ t }_{ 0 } }{ 2 } =4.9\cfrac { { t }_{ 0 }^{ 2 } }{ 4 } \rightarrow 7$$
$$v\left( { { t }_{ 0 } }/{ 2 } \right) ={ v }_{ initial }-\cfrac { 9.8{ t }_{ 0 } }{ 2 } \rightarrow 8$$
$${ v }^{ 2 }\left( { { t }_{ 0 } }/{ 2 } \right) -{ v }_{ initial }^{ 2 }=-19.6y\left( { { t }_{ 0 } }/{ 2 } \right) \rightarrow 9$$
We know, $${ v }_{ initial }={ t }_{ 0 }9.8$$
Substitute in equation $$4$$ and $$7$$
$$h=9.8{ t }_{ 0 }^{ 2 }-4.9{ t }_{ 0 }^{ 2 }=4.9{ t }_{ 0 }^{ 2 }\rightarrow 10$$
$$y\left( { { t }_{ 0 } }/{ 2 } \right) =\cfrac { 9.8{ t }_{ 0 }^{ 2 } }{ 4 } =4.9\cfrac { { t }_{ 0 }^{ 2 } }{ 4 } $$
$$=3.675{ t }_{ 0 }^{ 2 }\rightarrow 11$$
From equation $$10$$
$${ t }_{ 0 }^{ 2 }=\cfrac { h }{ 4.9 } $$
Substitute this in equation $$11$$
$$y\left( { { t }_{ 0 } }/{ 2 } \right) =3.675{ t }_{ 0 }^{ 2 }$$
$$=3.675\times \cfrac { h }{ 4.9 } $$
$$=0.75h$$