Let velocity at B be $$v$$.
From A to B :
Initial velocity, $$u = 0$$
Acceleration, $$a= f$$
Time taken, $$t=t_1$$
Using Newton's first equation of motion,
$$v=u+at$$
Velocity at B, $$v_1 = 0+ft_1 = ft_1$$
$$v_1= ft_1$$ ....(1)
Using Newton's second equation of motion,
$$s=ut+\dfrac 12 at^2$$
Distance covered, $$s= \dfrac{2d}{3}$$
$$\dfrac{2d}{3} = 0+\dfrac{1}{2}ft_1^2$$
$$\implies \ t_1 = \sqrt{\dfrac{4d}{3f}}$$
$$\implies \ t_1 =2 \sqrt{\dfrac{d}{3f}}$$ .....(b)
From B to C :
Initial velocity, $$u = v_1$$
Final velocity, $$v = 0$$
Acceleration, $$a$$
Time taken, $$t=t_2$$
Using Newton's first equation of motion,
$$v=u+at$$
$$0 = v_1+at_2$$
$$\implies = v = -at_2$$ ....(2)
From (1) and (2), we get
$$a = -\dfrac{ft_1}{t_2}$$
Using Newton's third equation of motion
$$2as=v^2-u^2$$
$$2a\dfrac{d}{3}=0^2-v_1^2$$
$$\dfrac{d}{3} = \dfrac{-v^2}{2a} = \dfrac{-(ft_1)^2}{2\times (-ft_1/t_2)} = \dfrac{ft_1t_2}{2}$$ ....(a)
From (a) and (b), $$\dfrac{d}{3} = \dfrac{ft_2}{2}\times \sqrt{\dfrac{4d}{3f}}$$
$$\implies \ t_2 = \sqrt{\dfrac{d}{3f}}$$
Thus total time taken, $$t = t_1+t_2 = 2 \sqrt{\dfrac{d}{3f}}+\sqrt{\dfrac{d}{3f}} = 3\sqrt { \dfrac{d}{3f}}$$
$$t=\sqrt { \dfrac{3d}{f}}$$