Self Studies

Motion in A Plane Test - 10

Result Self Studies

Motion in A Plane Test - 10
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    The angle between \(\vec A= \hat i+\hat j\) and \(\vec B = \hat i - \hat j\) is

    Solution

    Given

    \(\vec A= \hat i+\hat j\)

    \(\vec B = \hat i - \hat j\)

    \(\vec A. \vec B = |A||B|cos\ \theta\)

    \(Cos\theta={\vec A.\vec B\over |A||B|}\)

    \(= {(\hat i+\hat j).(\hat i-\hat j)\over \sqrt{1^2+1^2}\times \sqrt{1^2+(-1)^2}}={1-1\over2}=0\)

    ⇒ \(Cos\theta=0\)

    \(Cos\theta=Cos90°\)

    \(\therefore \ \theta= 90°\). Hence, verifies the option (b).

  • Question 2
    1 / -0

    Which one of the following statements is true?

    Solution

    A scalar quantity does not depend on direction so it does not change for different orientation of axes. So this verifies the option (d).

  • Question 3
    1 / -0

    The component of vector r along X-axis will have maximum value if:

    Solution

    On resolving the vector, values of cos \(\theta\) or sin \(\theta\) is always less than one, so components have a smaller value.

    If \(\vec r\) makes an angle \(\theta\) with x-axis, then components of \(\vec r\) along x-axis = rCos \(\theta\)

    It will be maximum if \(Cos\theta_{max}\) = 1 ⇒ \(\theta\) = 0°

    Hence, given vector \(\vec r\) is along positive X-axis.

  • Question 4
    1 / -0

    The horizontal range of a projectile fired at an angle of 15° is 50m. If it is fired with the same initial speed at an angle of 45°. its range will be:

    Solution

    a projectile is fired at \(\theta\) = 15°, R=50 m

    \(R={u^2sin2\theta\over g}\)

    \(50={u^2sin2\times15°\over g}\) ⇒ \(u^2=50g\times 2\)

    \(u^2=100g\)

    Now \(\theta\) = 45°, \(u^2=100g\)

    \(\therefore\) \(R={u^2sin2\theta\over g}\) = \(100g\times sin2\times45°\over g\)

    ⇒ R = 100 m

    So, this verifies option (c)

  • Question 5
    1 / -0

    In a two dimensional motion, instantaneous speed \(v_0\) is positive, constant. Then which of the following are necessarily true?

    Solution

    In the two-dimensional motion, If instantaneous speed is constant then equal path lengths are traversed in equal intervals of time because speed is a scalar quantity.

  • Question 6
    1 / -0

    In a two-dimensional motion, instantaneous speed \(v_0\) is positive and constant. Then which of the following are necessarily true?

    Solution

    We know that change in acceleration and velocity is in the direction of Force (F) by \(\vec F = m \vec a\) and change in velocity is zero so acceleration will also be zero and will be in the same planes as that of velocity.

  • Question 7
    1 / -0

    Three vectors \(\vec A\),\(\vec B\) and \(\vec C\) and add up to zero. Find which is false

    (a) (\(\vec A\)x\(\vec B\)) x \(\vec C\) is not zero unless \(\vec B\) and \(\vec C\) are parallel

    (b) (\(\vec A\)x\(\vec B\)).\(\vec C\) is not zero unless \(\vec B\),\(\vec C\) are parallel

    (c) \(\vec A\),\(\vec B\),\(\vec C\) defined in a plane, (\(\vec A\)x\(\vec B\)) x \(\vec C\) is in that plane

    (d) (\(\vec A\)x\(\vec B\)).\(\vec C\) = |\(\vec A\)||\(\vec B\)|\(\geq\)|\(\vec C\)| → \(C^2=A^2+B^2\)

    Solution

    (\(\vec A\) x \(\vec B\)) = \(\vec X\)

    The direction of x is perpendicular to both planes containing A and B.

    (\(\vec A\) x \(\vec B\)) x \(\vec C\) = \(\vec X\) x \(\vec C\) = \(\vec Y\)

    The direction of \(\vec Y\) is perpendicular to the plane of \(\vec X\) and \(\vec C\) which again become in the plane of \(\vec A\),\(\vec B\),\(\vec C\) but perpendicular to the plane of \(\vec X\) and \(\vec C\) Hence, option (c) is verified.

  • Question 8
    1 / -0

    It is found that \(|\vec A+\vec B|\) = \(|\vec A|\) this necessarily implies

    Solution

    \(|\vec A+\vec B|^2=|\vec A|^2\)

    \(|\vec A|^2+|\vec B|^2+2|\vec A||\vec B|cos\theta=|\vec A|^2\)

    \(|\vec B|^2+2|\vec A||\vec B|cos\theta=0\)

    \(|\vec B|\ \ \ [|\vec B|+2|\vec A|cos\theta]=0\)

    \(|\vec B|=0\)

    verifies option (a).

    Or \(|\vec B|+2|\vec A|cos\theta=0\)

    \(cos\theta={-|\vec B|\over 2|\vec A|}\)

  • Question 9
    1 / -0

    Two particles are projected in air with speed \(v_0\) at angles \(\theta_1\) and \(\theta_2\) (both acute) to the horizontal, respectively. If the height reached by the first particle is greater than of the second, then tick the right choices

    (a) angle of projection: \(\theta_1>\theta_2\)

    (b) time of flight: \(T_1>T_2\)

    (c) horizontal range: \(R_1>R_2\)

    (d) total energy: \(U_1<U_2\)

    Solution

    Maximum height H of projectile H = \(u^2sin^2\theta\over 2g\)

    from here \(H\propto sin^2\theta\)

    For Projectile 1, \(\theta=\theta_1\)

    For Projectile 2, \(\theta=\theta_2\)

    \(u_1=v_o\,\,\,\,\,u_2=v_0\)

    (a) \(H_1>H_2\)     (Given)

    \({v^2_0sin^2\theta_1\over 2g}>{v^2_0sin^2\theta_2\over 2g}\)

    \(sin^2\theta_1>sin^2\theta_2\)

    \(sin^2\theta_1-sin^2\theta_2>0\)

    \((sin\theta_1-sin\theta_2)(sin\theta_1+sin\theta_2)>0\)

    thus either \((sin\theta_1-sin\theta_2)>0\) 

    \(\Rightarrow\, sin\theta_1 >sin\theta_2\)

    or \((sin\theta_1+sin\theta_2)>0\)

    ⇒ \(\theta_1\) and \(\theta_2\) lies between     \(sin\theta_1>sin\theta_2\)

    0° to 90° i.e., acute as given \(\theta_1\) > \(\theta_2\)    ....(i)

    so option (a) is correct

    (b) we know time of flight

    \(T={2u\,sin\theta\over g}\)

    \(\therefore\) \(T_1={2v_0\,sin\theta_1\over g}\) and \(T_2={2v_0\,sin\theta_2\over g}\)

    \({T_1\over T_2}={sin\theta_1\over sin\theta_2}\) ⇒ \(T_1sin\theta_2=T_2sin\theta_1\)

    As sin\(\theta_1\) > sin\(\theta_2\)

    \(\therefore\) \(T_1>T_2\)

    So, Option (b) is also correct.

  • Question 10
    1 / -0

    Following are four different relations about displacement, velocity and acceleration for the motion of a particle in general. Choose the incorrect one(s).

    (a) \(\vec \upsilon_{av}= {1\over2}[\vec \upsilon(t_1)+\vec \upsilon(t_2)]\)

    (b) \(\vec \upsilon_{av}={\vec r(t_2)-\vec r(t_1)\over t_2-t_1}\)

    (c) \(\vec r={1\over2}[\vec \upsilon(t_2)-\vec \upsilon(t_1)]\,÷\, (t_2-t_1)\)

    (d) \(\vec a_{av}={\vec \upsilon(t_2)-\vec \upsilon(t_1)\over (t_2-t_1)}\)

    Solution

    For option (a):

    (i) If acceleration is uniform then

    \(\vec \upsilon_{av}={\vec u+\vec v\over2}\) or \(\vec \upsilon_{av}={1\over2}[\vec \upsilon(t_2)-\vec \upsilon(t_1)]\) is correct only when acceleration is uniform, but it not given.

    So option (a) is verified that given relation is incorrect.

    For option (c): In given relation displacement is half of rate of change of velocity which is not possible because dimensions in LHS is \([M^0L^ 1T ^0 ]\) but in RHS. \([M^0L^ 1T ^{-2} ]\) which are not equal. So relation is incorrect. 

  • Question 11
    1 / -0

    For a particle performing uniform circular motion, choose the correct statement(s) from the following:

    (a) Magnitude of particle velocity (speed) remains constant.

    (b) Particle velocity remains directed perpendicular to radius vector.

    (c) Direction of acceleration keeps changing as particle moves.

    (d) Angular momentum is constant in magnitude but direction keeps changing.

    Solution

    (i) For option (a): In uniform circular motion speed is always constant, so verified option(a).

    (ii) For option (b): The direction of velocity is always tangentially and towards motion, if a string breaks up the particle moves tangentially. So verifies the option (b).

    (iii) For option (c): The direction of acceleration \(({v^2\over r})\) is always along the direction of force applied by Newton’s IInd law of motion. The force is applied on the string to rotate the particle in circular motion, hence the direction of acceleration is along the string towards the center of circular path. As string is moving in circular plane with particle so the direction of acceleration changes always and verifies the option (c).

  • Question 12
    1 / -0

    For two vectors \(\vec A\) and \(\vec B\), \(|\vec A+\vec B|\) = \(|\vec A-\vec B|\) is always true when

    (a) \(|\vec A|=|\vec B|\ne0\)

    (b) \(\vec A\perp\vec B\)

    (c) \(|\vec A|=|\vec B|\ne0\) and \(\vec A\) and \(\vec B\) are parallel or antiparallel

    (d) When either \(|\vec A|\,or\ |\vec B|\) is zero

    Solution

    \(|\vec A+\vec B|\) = \(|\vec A-\vec B|\)   (given)

    \(|\vec A+\vec B|^2\) = \(|\vec A-\vec B|^2\)    (squaring both sides)

    \(|\vec A|^2+|\vec B|^2+2|\vec A||\vec B|cos\theta=|\vec A|^2+|\vec B|^2-2|\vec A||\vec B|cos\theta\)

    \(4|\vec A||\vec B|cos\theta=0\)

    ⇒ \(4\ne0, |\vec A|=0\) or \(|\vec B|=0\) or cos \(\theta\) = 0

    ⇒ cos \(\theta\) = cos 90°

    ⇒ \(\theta\) = 90°

    ⇒ |A| = |B| = 0

    So, It does not verify the option (a) and (c) and verifies the option (b) and (d).

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now