Self Studies

Laws of Motion Test - 66

Result Self Studies

Laws of Motion Test - 66
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0

    Directions For Questions

    A small sphere B of mass $$m$$ is released from rest in the position shown and swings freely in a vertical plane, first about O and then about the peg A after the cord comes in contact with the peg. Determine the tension in the cord:

    ...view full instructions

    just before the sphere comes in contact with the peg.

    Solution
    Given :    $$r = 0.8$$ m               $$u = 0$$  m/s
    Before coming in contact with the peg, the sphere rotates in a circle of radius  $$r =0.8$$ m
    Let the velocity of the sphere when it reaches the point C be  $$v$$.
    From figure, $$PC  = r sin 30^o  = \dfrac{r}{2}$$  m

    Work-energy theorem :  $$W =  \Delta K.E$$         
    $$\therefore$$   $$mg (PC) =\dfrac{1}{2} mv^2 - \dfrac{1}{2}mu^2  $$

    OR    $$mg \times \dfrac{r}{2}  = \dfrac{mv^2}{2}   - 0$$                      

    $$\implies \dfrac{mv^2}{r}  =mg$$

    Using: $$ ma_r =   \dfrac{mv^2}{r}  = T - mgsin30^o$$
    $$\therefore$$     $$mg  = T - \dfrac{mg}{2}$$                     
     $$\implies T = \dfrac{3mg}{2}$$

  • Question 2
    1 / -0

    Directions For Questions

    Bob B of the pendulum AB is given an initial velocity $$\displaystyle \sqrt{3Lg}$$ in horizontal direction. Find the maximum height of the bob from the starting point:

    ...view full instructions

    if AB is a massless rod,

    Solution
    Initial velocity of the rod      $$u  = \sqrt{3Lg}$$
    Let the maximum height attained to be  $$H$$. At the starting point, its potential energy is zero while at the highest point, its kinetic is zero.
    Applying conservation of energy : $$P.E_i + K.E_ i  =P.E_f + K.E_f$$
    $$\therefore$$   $$0 + \dfrac{1}{2}mu^2   =  mgH + 0$$

    $$\implies$$      $$H = \dfrac{u^2}{2g}  = \dfrac{3Lg}{2g}  = \dfrac{3L}{2}$$
  • Question 3
    1 / -0
    A particle is given an initial speed $$u$$ inside a smooth spherical shell of radius $$R$$ so that it is just able to complete the circle. Acceleration of the particle, when its velocity is vertical, is

    Solution
    Let, the velocity at highest point be v then
    $$m{ v }^{ 2 }/r = mg \dfrac { m{ u }^{ 2 } }{ 2 } = 2\times mgR + \dfrac { mv^{ 2 } }{ 2 } $$
    $$ \Rightarrow  u = \sqrt { 5Rg }  \dfrac { mx^{ 2 } }{ 2 }  = \dfrac { m{ u }^{ 2 } }{ 2 }  - mgR$$
    Net acceleration at the point, when velocity is vertical is: 
    $$a = \sqrt { { \left( \dfrac { mx^{ 2 } }{ 2 }  \right)  }^{ 2 }+ { g }^{ 2 } }  = \sqrt { 10\times g } $$
    $$=g\sqrt{10}$$
  • Question 4
    1 / -0
    A simple pendulum is released from rest with the string in horizontal position. The vertical component of the velocity of the bob becomes maximum, when the string makes an angle $$\displaystyle \theta $$ with the vertical. The angle $$\displaystyle \theta $$ is equal to
    Solution
    At angle theta , l = length of rod v = pendulum velocity u = vertical velocity 
    By energy conservation,
    $$mgl\cos { \theta  } = \dfrac { m{ v }^{ 2 } }{ 2 }  = \dfrac { m{ u }^{ 2 } }{ 2\sin ^{ 2 }{ \theta  }  } $$
    Differentiating wrt $$\theta$$ , and putting $$\dfrac { du }{ d\theta  } =0$$; 
    we get, $$\theta  = \cos ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  } \\ $$
  • Question 5
    1 / -0
    A particle is moving in a circular path in the vertical plane. It is attached at one end of a string of length $$l$$ whose other end is fixed. The velocity at lowest point is $$u$$. The tension in the string is $$\displaystyle \vec{T}$$ and acceleration of the particle is $$\displaystyle \vec{a}$$ at any position. Then $$\displaystyle \vec{T}.\vec{a}$$ is zero at highest point if
    Solution
    Tensiois $$0$$ icasof $$B$$
    If $$u$$ imorthathistheTensioinevezero. 
    i$$u$$  ilesthathisthethparticlwoulnevebabltcompletthcircular loop.
    $$m{ v }^{ 2 }/r\quad =\quad mg\\ \dfrac { m{ u }^{ 2 } }{ 2 } =\quad 2\times mgR\quad +\quad \dfrac { mv^{ 2 } }{ 2 } \\ \Rightarrow \quad u\quad =\quad \sqrt { 5Rg } $$
  • Question 6
    1 / -0
    What is the maximum speed at which a railway carriage can move without toppling over along a curve of radius $$R=200m$$ if the distance from the centre of gravity of the carriage to the level of the rails is $$h=1.0m$$, the distance between the rails is $$h=1.0m$$, the distance between the rails is $$l=2.0m$$ and the rails are laid horizontally? (Take $$\displaystyle g= 10m/s^{2}$$)
    Solution
    In railway carriage's frame, the carriage is in translational as well as rotational equilibrium.
    Rotational equilibrium : Torque about point O is zero    i.e      $$\tau_{o}  = 0$$
    $$\therefore$$   $$f \times 1  - N \times 1  = 0$$               $$\implies f = N$$
    Translational equilibrium :
    $$\therefore$$   $$mg  = N$$                     $$\implies mg = f$$                     ..........(1)
    Also   $$f  = ma_r$$                                      .........(2)
    From (1) and  (2), we get        $$ma_r  = mg$$ 
    $$\therefore$$     $$\dfrac{mv^2}{r}  = mg$$                      $$\implies v = \sqrt{rg}$$
    $$\therefore$$    $$v  = \sqrt{200 \times 10}  =44.72 $$  $$ m/s$$

  • Question 7
    1 / -0
    The sphere at A is given a downward velocity $$\displaystyle v_{0}$$ of magnitude $$5 m/s$$ and swings in a vertical plane at the end of a rope of length $$l=2 m$$ attached to a support at $$O$$. Determine the angle $$\displaystyle \theta $$ at which the rope will break, knowing that it can withstand a maximum tension equal to twice the weight of the sphere.

    Solution
    Given :         $$v_o  =5  m/s$$                            $$l =2$$ m                      $$T = 2mg$$
    From figure,       $$PM = l sin\theta$$
    Circular motion equation at P :                 $$\dfrac{mv^2}{l} = T - mgsin\theta$$
    OR          $$mv^2  =l( 2mg  - mgsin\theta)  = 2 (2 m \times 10  - m(10) sin\theta)$$
    $$\implies $$    $$mv^2  = m (40  - 20 sin\theta)$$

    Work-energy theorem :               $$W = \Delta K.E$$
    $$\therefore$$    $$mg (PM)  = \dfrac{1}{2}mv^2 - \dfrac{1}{2}mv_o^2$$

    OR         $$2mg (l sin\theta)  =m(40 - 20sin\theta)  - mv_o^2$$
    OR           $$2 m (10) (2 sin\theta)  = m (40 - 20 sin\theta)  - m(25)$$                $$\implies sin\theta  = \dfrac{1}{4}$$

  • Question 8
    1 / -0
    A weightless thread can withstand tension upto $$30\;N$$. A stone of mass $$0.5\ kg$$ is tied to it and is revolved in a circular path of radius $$2\ m$$ in a vertical plane. If $$g=10\ m/s^2$$, then the maximum angular velocity of the stone will be
    Solution
    Given :    $$T_{max}  =30$$ N          $$m = 0.5 kg$$                    $$r  =2$$ m           $$g = 10  m/s^2$$
    Tension in the string is maximum when the stone is at the lowest position of the vertical motion.
    Let the maximum angular velocity be  $$w_{max}$$.
    Using circular motion equation :            $$mrw^2_{max}   =T_{max} - mg$$
    $$\therefore$$       $$0.5 \times 2 \times w^2_{max}   =30  - 0.5 \times 10$$
    OR       $$w^2_{max}  = 30 - 5  =25$$                      $$\implies  w_{max} = 5$$  $$rad/s$$

  • Question 9
    1 / -0
    A car is travelling along a circular curve that has a radius of 50 m. If its speed is 16 m/s and is increasing uniformly at $$\displaystyle 8 m/s^{2},$$ determine the magnitude of its acceleration at this instant.
    Solution
    $$\displaystyle a= \sqrt{{a_{t}}^{2}+{a_{n}}^{2}}= \sqrt{\left ( \frac{dv}{dt} \right )^{2}+\left ( \frac{v^{2}}{R} \right )^{2}}= \sqrt{\left ( 8 \right )^{2}+\left ( \frac{256}{50} \right )^{2}}= 9.5m/s^{2}$$
  • Question 10
    1 / -0
    A circular tube of mass M is placed vertically on a horizontal surface as shown in the figure. Two small spheres, each of mass m, just fit in the tube, are released from the top. If $$\displaystyle \theta $$ gives the angle between radius vector of either ball with the vertical, obtain the value of the ratio M/m if the tube breaks its contact with ground when $$\displaystyle \theta = 60^{\circ}.$$ Neglect any friction.

    Solution
    Let the speed of sphere at $$\theta=60^0$$ be $$v$$.
    By conservation of energy, $$\dfrac{1}{2}mv^2=mg(R-Rcos60^0)=mgR/2$$

    $$\implies mv^2=mgR$$

    Let the normal force by tube on a sphere be $$N$$, towards the center.
    Balancing forces in the radial direction,
    $$N+mgcos60^0=\dfrac{mv^2}{R}=\dfrac{mgR}{R}=mg$$
    $$\implies N=0.5mg -(1)$$

    Now, by newton's third law, equal normal force is applied by each sphere on the tube in the radial direction. Total vertical component of these forces is,
    $$N_{vertical}=2Ncos60^0=N$$, in the upward direction

    The tube will break contact with ground when normal force by ground on the tube is zero.

    So, $$N_{vertical}=Mg\implies 0.5mg=Mg\implies M=0.5m$$
    $$\implies M:m=0.5:1=1:2$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now