Self Studies

Laws of Motion Test - 67

Result Self Studies

Laws of Motion Test - 67
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    The bob of the pendulum shown in figure describes an arc of circle in a vertical plane. If the tension in the cord is $$2.5\ times$$ the weight of the bob for the position shown. Find the velocity and the acceleration of the bob in that position.

    Solution
    Let the mass of the bob be  $$m$$ and the velocity of the at point B be $$v$$
    Given :   $$r  =2$$ m $$T  =2.5  mg$$
    Using circular motion equation at B : $$\dfrac{mv^2}{r}  = T - mg cos30^o$$
    $$\therefore$$ $$\dfrac{mv^2}{2}  = 2.5 mg  - mg \times 0.866$$               
    OR    $$v^2  =  3.27 g   =3.27 \times 9.8 = 32   $$                 
    $$\implies  v =5.66 $$ m/s
    $$\therefore$$  Radial acceleration $$a_r  = \dfrac{v^2}{r}  = \dfrac{32}{2}  =16$$  $$m/s^2$$
    Also tangential acceleration $$a_t  = g sin 30^o  =9.8 \times 0.5  = 4.9$$  $$m/s^2$$
    Total acceleration $$a  = \sqrt{a_r^2 + a_t^2}  = \sqrt{16^2 + (4.9)^2} = 16.75$$   $$m/s^2$$

  • Question 2
    1 / -0
    The simple $$2 kg$$ pendulum is released from rest in the horizontal position. As it reaches the bottom position, the cord wraps around the smooth fixed pin at $$B$$ and continues in the smaller are in the vertical plane. Calculate the magnitude of the force $$R$$ supported by the pin at $$B$$ when the pendulum passes the position $$\displaystyle \theta = 30^{\circ}.\left ( g= 9.8m/s^{2} \right )$$

    Solution
    using energy conservation
    $$\Rightarrow ({ K.E.) }_{ E }+({ P.E.) }_{ E }=({ K.E.) }_{ C }+({ P.E.) }_{ C }$$
    $$\Rightarrow 0+2g\times 800\times { 10 }^{ -3 }=\frac { 1 }{ 2 } \times 2\times { { v }_{ 1 }^{ 2 } }+0$$
    $$\Rightarrow v_{ 1 }=4m/s$$
    again using energy conservation at point $$C$$ and $$D$$
    $$\Rightarrow ({ K.E.) }_{ C }+({ P.E.) }_{ C }=({ K.E.) }_{ D }+({ P.E.) }_{ D }$$ 
    $$\Rightarrow \frac { 1 }{ 2 } \times 2\times { { v }_{ 1 }^{ 2 } }+0=\frac { 1 }{ 2 } \times 2\times { { v }_{ 2 }^{ 2 }+ }2g \times  400(1-\cos { 30° } )\times { 10 }^{ -3 }$$
    $$\Rightarrow { v }_{ 2 }^{ 2 }=8+4\sqrt { 3 } $$
    From the diagram, at point $$D$$
     $$ \Rightarrow T=mg\cos { \theta  } +\frac { m{ v }_{ 2 }^{ 2 } }{ R } \\ \Rightarrow T=2\times 10\times \cos { 30° } +\frac { 2\times (8+\sqrt { 3 } ) }{ 400\times { 10 }^{ -3 } } $$ 
    $$\Rightarrow T=90.2N$$

  • Question 3
    1 / -0
    A car is travelling along a circular curve that has a radius of $$50$$ m. If its speed is $$16$$ m/s and is incrcasing uniformly at $$\displaystyle 8m/s^{2}.$$ Determine the magnitude of its acceleration at this instant.
    Solution
    Given :    $$r =50$$  m                     $$a_t  =8$$  $$m/s^2$$                       $$v  =16  $$  $$m/s$$
    Centripetal acceleration       $$a_r  = \dfrac{v^2}{r}  = \dfrac{(16)^2}{50}   =5.12$$   $$m/s^2$$

    $$\therefore$$  Total acceleration      $$a  =\sqrt{a_r^2 + a_t^2}  = \sqrt{(5.12)^2 + 8^2}   =\sqrt{90.2}  = 9.5$$  $$m/s^2$$
  • Question 4
    1 / -0
    A uniform rod of length L is placed symmetrically on two walls as shown in the figure. The rod is in equilibrium. If $$N_1$$ and $$N_2$$ are the normal forces exerted by the walls on the rod then

    Solution
    $$N_{1} \times \dfrac{l}{4}=N_{2} \times \dfrac{l}{4}$$
    $$N_{1}=N_{2}$$
    (by torque conservation)
    Correct option is (C).
  • Question 5
    1 / -0
    The mass of the bob of a simple pendulum of length $$L$$ is $$m$$. If the bob is left from its horizontal position then the speedof the bob and the tension in the thread in the lowest position of the bob will be respectively:

    Solution
    Velocity of the bob at point A is zero, thus its kinetic energy at A is zero.
    Let the velocity of the bob at point B be $$v$$ and tension in the string be $$T$$.
    Using work-energy theorem from A to B :       $$W  = \Delta K.E$$
    $$\therefore $$   $$mgL  = \dfrac{1}{2} mv^2  - 0$$             $$\implies v =\sqrt{ 2gL}$$

    Circular motion equation at B :            $$\dfrac{mv^2}{L}  = T - mg$$
    $$\therefore$$   $$T  = \dfrac{mv^2}{L} + mg  = \dfrac{m (2gL)}{L} + mg  = 3mg$$

  • Question 6
    1 / -0
    A weightless thread can bear tension upto $$3.7\;kg$$ wt. A stone of mass $$500\;gm$$ is tied to it and revolved in a circular path of radius $$4m$$ in a vertical plane. If $$g=10\;ms^{-2}$$, then the maximum angular velocity of the stone will be:
    Solution
    Given :    $$T_{max}  =3.7 kg wt = 37$$ N          $$m =500$$ gm $$= 0.5 kg$$                    $$r  =4$$ m           $$g = 10  m/s^2$$
    Tension in the string is maximum when the stone is at the lowest position of the vertical motion.
    Let the maximum angular velocity be  $$w_{max}$$.
    Using circular motion equation :            $$mrw^2_{max}   =T_{max} - mg$$
    $$\therefore$$       $$0.5 \times 4 \times w^2_{max}   =37  - 0.5 \times 10$$
    OR       $$w^2_{max}  =16$$                      $$\implies  w_{max} = 4$$  $$rad/s$$

  • Question 7
    1 / -0
    Stone tied at one end of light string is whirled round a vertical circle. If the difference between the maximum and minimum tension experienced by the string wire is $$2\ kg\ wt$$, then the mass of the stone must be
    Solution

    $$\textbf{Step 1: FBD [Ref. Fig.]}$$
    Tension will be maximum at bottom and minimum at top

    $$\textbf{Step 2: Velocities at highest and lowest points}$$
    Minimum velocity required at bottom point to complete circle $$= v$$
                    $$v = \sqrt{5gR}$$     $$....(1)$$

    $$\textbf{Step 3: Calculations }$$
    For revolving in complete circle tension at highest point  $$T\geq 0$$
               $$\Rightarrow T_{\min} = 0$$     

    Applying Newton's second law on the stone along centripetal direction (Considering direction towards center as positive)
                 $$\Sigma F_c = ma_c$$  $$=m\left (\cfrac{v^2}{R} \right)$$
                Using equation $$(1)$$ in the following

               $$\Rightarrow T_{max} - mg = \dfrac{mv^2}{R} = 5 mg$$

               $$\Rightarrow T_{\max} = 6 mg$$     [T is maximum at bottom]

              So,    $$ T_{\max} - T_{\min}  = 6mg$$   
                        $$\Rightarrow 6mg = 2g$$                                       Given: $$ T_{\max} - T_{\min}  = 2g$$   

              $$\Rightarrow m = \dfrac{2}{6} = \dfrac{1}{3} kg$$

    Hence $$C$$ is the correct option.

  • Question 8
    1 / -0
    If a particle of mass $$M$$ is tied to a light inextensible string fixed at point $$P$$ and particle is projected at A with velocity $$V_A\, =\, \sqrt{4 gL}$$ as shown. Find tension in the string at $$B$$. (Assume particle is projected in the vertical plane.)

    Solution
    Taking point A as reference where gravitational potential energy is zero,

    Total energy of particle at point A is, $$E_A = \dfrac{1}{2}MV_A^2 = 2MgL$$

    Let velocity at point B as $$V_B$$.
    So, Total energy at point B is, $$E_B = mgL + \dfrac{1}{2}MV_B^2$$
    By conservation of energy, $$E_A=E_B$$
    $$\implies \dfrac{1}{2}MV_B^2 = mgL\implies \dfrac{MV_B^2}{L}=2Mg$$

    So centripetal force point B is $$2Mg$$
    At point B, $$T+Mg=\dfrac{MV_B^2}{L}=2Mg\implies T=Mg$$

    So Tension in the string is $$Mg$$, at point B.
  • Question 9
    1 / -0
    A uniform rod of mass m and length L is suspended with two massless strings as shown in the figure. If the rod is at rest in a horizontal position the ratio of tension in the two strings $$T_1$$/$$T_2$$ is

    Solution
    Vertical equilibrium $$\sum F_Y=0$$,
    $$T_1 + T_2 = w$$  .........1
    Taking Moments about point 'O',
    Clockwise moments = Anticlockwise Moments;
    $$T_1 \times \dfrac{3L}{4}= w \times \dfrac{L}{2}$$
    $$\therefore T_1= \dfrac{2w}{3}$$ .......2
    Solving equations 1 and 2, 
    $$ \Rightarrow T_2= \dfrac {w}{3}$$,
    $$\therefore \dfrac{T_1}{T_2}= \dfrac{2}{1}$$

  • Question 10
    1 / -0
    Two uniform rods of equal length but different masses are rigidly joined to form an L-shaped body, which is then pivoted about O as shown in the figure. If the system is in equilibrium in the shown configuration. Then the ratio M/m will be:

    Solution
    Taking Moments about point 'O'
    clockwise moments = Anticlockwise moments,
    $$Mg \times \dfrac{l}{2} sin(30^o)$$ = $$mg \times \dfrac{l}{2} sin(60^o)$$ ,

    $$\Rightarrow \dfrac{M}{2}= m \dfrac{\sqrt3}{2}$$

    $$\therefore \dfrac{M}{m}= \sqrt{3}$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now