Given that velocities at different points are critical
so velocity at top point ($$T$$)
$$\Rightarrow$$ $${ V }_{ T }$$$$=\sqrt { gR } ...(1) $$
From the diagram
in right triangle $$\triangle OMA$$
$$\Rightarrow$$$$MA=OP=OP\cos { \theta } $$
At point $$A$$, $$\theta =60°$$
$${ \Rightarrow H }_{ A }=OG-OP\\ { \Rightarrow H }_{ A }=R-R\cos { 60° } =\frac { R }{ 2 } ...(2) $$
in right triangle $$\triangle OMB$$
$$\Rightarrow$$$$MB=QP=QP\cos { (180-\theta) } $$
At point $$B$$, $$\theta =120°$$
$${ \Rightarrow H }_{ B }=OG+OQ\\ { \Rightarrow H }_{ B }=R+R\cos { 60° } =\frac { 3R }{ 2 } ...(4) $$
Using energy conservation equation at point $$T$$ and $$A$$
$$\Rightarrow \frac { 1 }{ 2 } m{ { V }_{ T } }^{ 2 }+mg(2R)=\frac { 1 }{ 2 } m{ { V }_{ A } }^{ 2 }+mg{ H }_{ 1 }...(2)$$
putting the value of eqn (1), eqn (2) in eqn (4)
$$\Rightarrow \frac { 1 }{ 2 } m{ (\sqrt { gR } ) }^{ 2 }+mg(2R)=\frac { 1 }{ 2 } m{ { V }_{ A } }^{ 2 }+mg\frac { R }{ 2 } $$
$$\Rightarrow V_{ A }=2\sqrt { gR } $$
Using energy conservation equation at point $$T$$ and $$B$$
$$\Rightarrow \frac { 1 }{ 2 } m{ { V }_{ T } }^{ 2 }+mg(2R)=\frac { 1 }{ 2 } m{ { V }_{ B } }^{ 2 }+mg{ H }_{2}...(2)$$
putting the value of eqn (1), eqn (3) in eqn (4)
$$\Rightarrow \frac { 1 }{ 2 } m{ (\sqrt { gR } ) }^{ 2 }+mg(2R)=\frac { 1 }{ 2 } m{ { V }_{ B} }^{ 2 }+mg\frac { 3R }{ 2 } $$
$$\Rightarrow V_{ B }=\sqrt { 2gR } $$
Ratio of $${ V }_{ A }$$ and $${ V }_{ B }$$$$=\sqrt { 2 } :1$$
So the correct option is ($$D$$)