Self Studies

Work Energy and Power Test - 43

Result Self Studies

Work Energy and Power Test - 43
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A particle moves along $$X-$$axis from $$x=0$$ to $$x=1\ m$$ under the influence of a force given by $$F=3x^{2}+2x-10$$. Work done in the process is:
    Solution
    Given,
    $$F=3x^2+2x-10$$
    Work done $$=\int { F\cdot ds }$$
                       $$ =\int _{ 0 }^{ 1 }{ \left( { 3x }^{ 2 }+2x-10 \right) dx } $$
                       $$=\left[{ \frac { { 3x }^{ 3 } }{ 3 } +\frac { { 2x }^{ 2 } }{ 2 } -10x }\right]_{ 0 }^{ 1 }$$
                       $$=(1)^3+(1)^2-10-0$$
                       $$=2-10$$
                       $$=-8J$$
                           
  • Question 2
    1 / -0
    A block of mass $$m$$ at the end of a string is whirled round in a vertical circle of radius $$R$$. The critical speed of the block at the top of its swing below which the string would slacken before the block reaches the top is:
    Solution

    Correct Option: D

    Explanation:

    If the block is moving at critical speed, the tension in the string will be zero at the top, and the centripetal force will be provided by gravity:

    $$mg=\dfrac{m{{v}^{2}}}{R}~\Rightarrow v=\sqrt{Rg}$$

  • Question 3
    1 / -0
    $$4\ J$$ of work is required to stretch a spring through $$10\ cm$$ beyond its unstreched length. The extra work required to stretch it through additional $$10\ cm$$ shall be
    Solution
    W = 4J
    X = 10cm = 0.1 m = $$10^{-1}$$
    By Hook's law,
    W = $$\frac{1}{2}$$k$$x^2$$_________eq1
    4 = $$\frac{1}{2}$$ x k x 0.1 x 0.1
    8 = k x $$10^{-2}$$
    k = 800 N$$m^{-1}$$
    Additional 10cm means 0.1 + 0.1 i.e 0.2
    Therefore again by same law,
    $$w_1$$ = $$\frac{1}{2}$$ x 800 x 4 x $$10^{-2}$$
    $$w_1$$ = $$16 J$$
    AS we know,
    w = $$w_1$$ - W
    w = $$12 J$$
  • Question 4
    1 / -0
    Under the action of a force, a $$2\ kg$$ body moves such that its position $$x$$ as a function of time $$t$$ is given by $$x=\dfrac{t^{3}}{3}$$, where $$x$$ is in meter and $$t$$ in second. The work done by the force in first two seconds is:
    Solution
    Given,
    $$x=\dfrac{t^3}{3}$$
    Differentiate it wrt t
    $$\dfrac{dx}{dt}=\dfrac{3}{3}t^2$$
    $$\dfrac{dx}{dt}=t^2$$
    $$v=t^2$$
    Workdone (W)= Change in K.E
    $$W=K.E_f-K.E_i$$
    $$K.E_i=0$$
    $$K.E_f=\dfrac{1}{2}mv^2$$
    $$K.E_f=\dfrac{1}{2}\times 2\times 4^2$$
    $$K.E_f=16J$$
    $$W=16J$$
  • Question 5
    1 / -0
    A particle moves along $$x-$$axis from $$x=0$$ to $$x=5$$ meter under the influence of a force $$F=7-2x+3x^{2}$$. The work done in the process is:
    Solution
    Given,
    $$F=3x^2-2x+7$$
    Work done $$=\int { F\cdot ds }$$
                       $$ =\int _{ 0 }^{ 5 }{ \left( { 3x }^{ 2 }-2x+7 \right) dx } $$
                       $$=\left[{ \frac { { 3x }^{ 3 } }{ 3 } -\frac { { 2x }^{ 2 } }{ 2 } +7x }\right]_{ 0 }^{ 5}$$
                       $$=(5)^3-(5)^2+7\times 5-0$$
                       $$=125-25+35$$
                       $$=135J$$
  • Question 6
    1 / -0
    A boy is swinging in a swing. If he stands the time period will
    Solution
    As the child stand up the effective length of pendulum decreases due to the reason that center of gravity rises up.
    According to $$T=2\pi\sqrt{\left(\dfrac{l}{g}\right)}$$
    Thus, the time peroid decreases
  • Question 7
    1 / -0
    A body of mass $$4\ kg$$ moves under the action of a force $$\overrightarrow { F } =\left( \hat { 4i } +12{ t }^{ 2 }\hat { j }  \right) N$$, where $$t$$ is the time in second. The initial velocity of the particle is $$(2\hat { i } +\hat { j } +2\hat { k } )m{s}^{-1}$$. If the force is applied for $$1\ s$$, work done is:
    Solution
    Given Mass $$m=4kg$$
    Force $$\overrightarrow { F } =\left( 4\hat { i } +12{ t }^{ 2 }\hat { j }  \right) N$$
    Initial velocity $$\overrightarrow { v } =\left( 2\hat { i } +\hat { j } +2\hat { k }  \right) m/s$$
    Magnitude of $$\overrightarrow { v } =\sqrt { { 2 }^{ 2 }+{ I }^{ 2 }+{ I }^{ 2 } } =\sqrt { 9 } \quad =3m/s$$
    Net force $$=\left| \left( 4i+\left| 2{ t }^{ 2 }\hat { j }  \right|  \right) N \right| \\ \Rightarrow ma=\sqrt { { 16 }^{ 2 }+144{ t }^{ 4 } } \\ \Rightarrow 4a=4\sqrt { 1+9{ t }^{ 4 } } \\ \Rightarrow a=\sqrt { 1+9{ t }^{ 4 } } \\ \Rightarrow \cfrac { dv }{ dt } =\sqrt { 1+9{ t }^{ 4 } } \\ \Rightarrow v=\sqrt { { 1 }^{ 2 }+{ \left( { 3t }^{ 2 } \right)  }^{ 2 } } \\ at(t=1)\quad =4$$
    Work $$=$$ Force $$\times $$ displacement
    $$=12.6\times \cfrac { 1 }{ 3 } =4J$$

  • Question 8
    1 / -0
    Under the action of a force, a $$2lg$$ body moves such that it position $$x$$ as a function of time is given by $$x=\cfrac{{t}^{3}}{3}$$, where $$x$$ is in metre and $$t$$ in seconds. The work done by the force in the first two seconds is
    Solution
    Given : Mass m$$=2kg$$ $$x(t)=\cfrac { { t }^{ 3 } }{ 3 } $$
    Time $$t=2s$$
    Differentiating position $$x(t)= velocity v$$
    $$=\cfrac { d }{ dt } \left( \cfrac { { t }^{ 3 } }{ 3 }  \right) =\cfrac { 1 }{ 3 } .3{ t }^{ 2 }\quad ={ t }^{ 2 }$$
    At $$t=2s\Rightarrow v={ t }^{ 2 }\quad =4m/s$$
    Kinetic energy $$=\cfrac { 1 }{ 2 } m{ v }^{ 2 }\quad =16J$$

  • Question 9
    1 / -0
    A particle is moving in a vertical circle the tension in the string when passing through two position at angle $${30}^{o}$$ and $${60}^{o}$$ from vertical lowest position are $${T}_{1}$$ and$${T}_{2}$$ respectively then-
    Solution
    $$T-mgcos\theta =\dfrac { m{ v }^{ 2 } }{ r } \\ T=mgcos\theta +\dfrac { m{ v }^{ 2 } }{ r } \\ for\quad \theta =30\\ { T }_{ 1 }=mgcos30+\dfrac { m{ v }^{ 2 } }{ r } \\ for\quad \theta =60\\ { T }_{ 2 }=mgcos60+\dfrac { m{ v }^{ 2 } }{ r } \\ { T }_{ 1 }>{ T }_{ 2 }$$
  • Question 10
    1 / -0
    A weightless thread can support tension upto $$30N$$. A particle of mass $$0.5kg$$ is tied to it and is revolved in a circle of radius $$2m$$ in a vertical plane. If $$g=10m/{s}^{2}$$, then the maximum angular velocity of the stone will be
    Solution
    $$T-mg=m\omega ^{ 2 }r\\ { T }_{ max }=mg+m\omega ^{ 2 }r\\ { \omega  }^{ 2 }=\left( \frac { T-mg }{ mr }  \right) \\ =\left( \frac { 30-5 }{ 0.5(2) }  \right) \\ =5rad/sec$$

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now