Self Studies

Work Energy and Power Test - 53

Result Self Studies

Work Energy and Power Test - 53
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    Mass of $$B$$ is four times that of $$A . B$$ moves with a velocity half that of $$A$$. Then, $$B$$ has 
    Solution
    According to question given,
    $$M_B = 4 \times M_A $$ and $$ V_B = \dfrac{V_A}{2} $$

    $$K.E_A = \dfrac{1}{2}M_AV_A^2 $$ .........(1)

    $$K.E_B = \dfrac{1}{2}M_BV_B^2 $$  =  $$\dfrac{1}{2}\ (4 \times M_A) \left(\dfrac{V_A}{2}\right)^2=\dfrac{1}{2}M_AV_A^2 $$........(2)

    From above equation 
    $$K.E_A=K.E_B$$
  • Question 2
    1 / -0
    A body of mass $$15\ kg$$ moving with a velocity of $$10\ ms^{-1}$$ is bought to rest. The work done by the brake is
    Solution
    $$W = change\ in\ kinetic\ energy =\dfrac{1}{2}m(v^2-u^2) $$

    $$W =   \dfrac{1}{2} \times 15 \times (0^2-10^2)$$

    $$W =  - 750J$$

    Hence, option $$C$$ is correct answer.
  • Question 3
    1 / -0
    The work done in placing a charge of 8$$\times $$$${ 10 }^{ -18 }$$ coulomb on a condenser of capacity 100 micro-farad is 
    Solution

  • Question 4
    1 / -0
    A bod of mass M is suspended by a massless string of length L.The horizontal velocity V at position A is just sufficient to make real the point B.The angle $$\theta$$ at which the speed of the bob is half of that it A satisfies:

    Solution
    Use conservation of energy,
    $$\cfrac { 1 }{ 2 } m{ v }_{ o }^{ 2 }=\cfrac { 1 }{ 2 } m{ v }^{ 2 }+mgl \left( 1-\cos { \theta  }  \right) -------(i)$$
    where $$v_{o}=$$horizontal velocity
    $$mg(2l)=\cfrac { 1 }{ 2 } m{ v }_{ o }^{ 2 }-\cfrac { 1 }{ 2 } m{ v }_{ top }^{ 2 }-------(ii)$$
    Since $$v_{o}$$ is just sufficient
    $$\cfrac { m{ v }_{ top }^{ 2 } }{ l } =T+mg\\ T=0,{ v }_{ top }=\sqrt { gl } $$
    Then equation $$(ii)$$,
    $$\Longrightarrow { v }_{ o }=\sqrt { 5gl } $$
    According to the question, $$v=\cfrac { { v }_{ o } }{ 2 } $$
    From equation $$(i),$$
    $$\cfrac { 1 }{ 2 } m5gl=\cfrac { 1 }{ 2 } m\left( \cfrac { 5gl }{ 4 }  \right) +mgl\left( 1-\cos { \theta  }  \right) \\ \Longrightarrow \cfrac { 20mgl-5mgl }{ 8 } =mgl\left( 1-\cos { \theta  }  \right) \\ \Longrightarrow \cos { \theta  } =\cfrac { 7 }{ 8 } $$
    Hence, $$\cfrac{3 \pi}{4} < \theta < \pi$$.
  • Question 5
    1 / -0
    A body of mass 1 kg begins to move under the action of a time dependent  force $$ \overrightarrow { F } =(2t\hat { i } +3t^{ 2 }\hat { j } ) $$ N, where $$ \hat { i } $$ and $$ \hat { j }  $$ are unit vectors along x and y axes. What power will be developed by the force at the time t?
    Solution
    As given $$\overrightarrow{F}=(2t\hat{i}+3t^2\hat{j})N$$
    Where $$\hat{i}$$ and $$\hat{j}$$ are unit vectors along x and y axis
    $$F=ma$$
    $$\Rightarrow a=\cfrac{F}{m}=\cfrac{(2t\hat{i}+3t^2\hat{j})}{2}=[m=1kg]\\ \Rightarrow a=(2t\hat{i}+3t^2\hat{j})m/s^2$$
    Acceleration $$a=\cfrac{dv}{dt}$$
    $$\Rightarrow dv=a.dt\rightarrow(i)\\ \int{dv}=\int{a.dt}=\int{(2t\hat{i}+3t^2\hat{j})}dt\\v=t^2\hat{i}+t^3\hat{j}\\P=F.v=(2t\hat{i}+3t^2\hat{j})(t^2\hat{i}+t^3\hat{j})\\ \quad=2t.t^+3t^2t^3\\P=(2t^3+3t^5)W$$
  • Question 6
    1 / -0
    A particle is moving in a vertical circle. The tension in the string when passing through two positions at angles $${30}^{o}$$ and $${60}^{o}$$ from vertical (lowest position) are $${T}_{1}$$ and $${T}_{2}$$ respectively, then
    Solution
    From the Free Body Diagram we get,
    $$T=  \dfrac{mv^2}{r}+ mg cos \theta$$
    At $$   \theta= 30 ^0    \quad T = T_1= \dfrac{mv^2}{r}+ \dfrac{\sqrt{3}mg}{2} $$
    At $$\theta= 60 ^0    \quad T= T_2=  \dfrac{mv^2}{r}+ \dfrac{mg}{2}$$
    From Above we get
    $$T_1 > T_2$$

  • Question 7
    1 / -0
    A body of mass $$2\ kg$$ moving under a force has relation between displacement $$x$$ and time $$t$$ as $$x=\dfrac{t^{3}}{3}$$ where $$x$$ is in metre and $$t$$ is in sec. The work done by the body in first two second will be
    Solution
    work done = change in kinetic energy

    $$x=\dfrac{t^3}{3}$$
    velocity $$v=\dfrac{dx}{dt}=\dfrac{d\left ( \dfrac{t^3}{3} \right )}{dt}=t^2$$

    given,  $$t=2s$$

    Velocity $$=t^2=2^2=4$$

    $$W=\dfrac{1}{2}mv^2$$

    $$=\dfrac{1}{2} \times 2 \times 4^2$$

    $$=16J$$
  • Question 8
    1 / -0
    Work done by a force $$\vec{F}=(\hat{i}+2\hat{j}+3\hat{k})\ N$$ action on a particle in displacing it from the point $$\vec{r}_{1}=\hat{i}+\hat{j}+\hat{k}$$ to the point $$\vec{r}_{1}=\hat{i}-\hat{j}-2\hat{k}$$
    Solution
    work = force * displacement,

    $$W=F\times s$$

    $$s=(i-j-2k)-(i+j+k)=-2j-3k$$

    $$F=i+2j+3k$$

    $$W=(i+2j+3k)\times (-2j-3k)$$

    $$\therefore W=-13J$$
  • Question 9
    1 / -0
    By applying a force $$F=(3xy-5z) j +4zk$$ a particle is moved along the path $$y=x^2$$ from point $$(0,0,0)$$ to the point $$(2,4,0)$$. The work done by the F on the particle is (all values are in SI units)

    Solution
    $$ \bar{F} = (3xy-5z)\hat{j}+4z\hat{k} $$
    $$ x^{2} = y $$
    $$ x = y ^{1/2} $$
    Substitute in above equation 
    $$ \bar{F} = (3y^{3/2}-5z)\hat{j}-4z\hat{k} $$
    dw = F.dx 
    In $$ (\hat{j}) $$ direction 
    $$ W = _{0}^{4}\int 3y^{3/2}dy $$
    $$ \rightarrow \frac{3y^{5/2}}{5/2}|_{0}^{4} $$
    $$ W = \frac{192}{5} $$ joule 
    (in 'z' work done is always zero)

  • Question 10
    1 / -0
    Two masses $$10 \ gm$$ and $$40 \ gm$$ are moving with kinetic energies in the ratio $$9:25$$. The ratio of their linear momentum is:
    Solution

Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now