Self Studies

Work Energy and Power Test - 65

Result Self Studies

Work Energy and Power Test - 65
  • Score

    -

    out of -
  • Rank

    -

    out of -
TIME Taken - -
Self Studies

SHARING IS CARING

If our Website helped you a little, then kindly spread our voice using Social Networks. Spread our word to your readers, friends, teachers, students & all those close ones who deserve to know what you know now.

Self Studies Self Studies
Weekly Quiz Competition
  • Question 1
    1 / -0
    A simple pendulum is released from rest with the string in horizontal position. The vertical component of the velocity of the bob becomes maximum, when the string makes an angle $$\displaystyle \theta $$ with the vertical. The angle $$\displaystyle \theta $$ is equal to
    Solution
    At angle theta , l = length of rod v = pendulum velocity u = vertical velocity 
    By energy conservation,
    $$mgl\cos { \theta  } = \dfrac { m{ v }^{ 2 } }{ 2 }  = \dfrac { m{ u }^{ 2 } }{ 2\sin ^{ 2 }{ \theta  }  } $$
    Differentiating wrt $$\theta$$ , and putting $$\dfrac { du }{ d\theta  } =0$$; 
    we get, $$\theta  = \cos ^{ -1 }{ \left( \dfrac { 1 }{ \sqrt { 3 }  }  \right)  } \\ $$
  • Question 2
    1 / -0
    A force $$\displaystyle F= -\frac{k}{x^{2}}\left ( x\neq 0 \right )$$ acts on a particle in x-direction. Find the work done by this force in displacing the particle from. $$\displaystyle x= +a\:$$to$$\:x= +2a.$$ Here, $$k$$ is a positive constant.
    Solution
    $$\displaystyle W= \int F\:dx= \int_{+a}^{+2a}\left ( \frac{-k}{x^{2}} \right )dx= \left [ \frac{k}{x} \right ]_{+a}^{+2a}$$
    $$\displaystyle = -\frac{k}{2a}$$
    Note: It is important to note that work comes out to be negative which is quite obvious as the force acting on the particle is in negative x-direction $$\displaystyle \left ( F= -\frac{k}{x^{2}} \right )$$ while displacement is along positive x-direction. (from x=a to x=2a)
  • Question 3
    1 / -0
    An object is displaced from position vector $$\displaystyle \vec{r}_{1}= \left ( 2\hat{i}+3\hat{j} \right )m\:$$ to$$ \:\vec{r}_{2}= \left ( 4\hat{i}+6\hat{j} \right )$$ m under a force $$\displaystyle \vec{F}= \left ( 3x^{2}\hat{i}+2y\hat{j} \right )N.$$ Find the work done by this force.
    Solution
    $$\displaystyle W= \int_{\vec{r}_{1}}^{\vec{r}_{2}}\vec{F}\cdot \vec{dr}$$

    $$\displaystyle = \int_{\vec{r}_{1}}^{\vec{r}_{2}}\left ( 3x^{2}\hat{i}+2y\hat{j} \right )\cdot \left ( dx\hat{i}+dy\hat{j}+dz\hat{k} \right )$$

    $$\displaystyle = \int_{\vec{r}_{1}}^{\vec{r}_{2}}\left ( 3x^{2}dx+2ydy \right )= \left [ x^{3}+y^{2} \right ]_{\left ( 2,3 \right )}^{\left ( 4,6 \right )}$$

    $$=83 J$$
  • Question 4
    1 / -0
    A particle is moving in a circular path in the vertical plane. It is attached at one end of a string of length $$l$$ whose other end is fixed. The velocity at lowest point is $$u$$. The tension in the string is $$\displaystyle \vec{T}$$ and acceleration of the particle is $$\displaystyle \vec{a}$$ at any position. Then $$\displaystyle \vec{T}.\vec{a}$$ is zero at highest point if
    Solution
    Tensiois $$0$$ icasof $$B$$
    If $$u$$ imorthathistheTensioinevezero. 
    i$$u$$  ilesthathisthethparticlwoulnevebabltcompletthcircular loop.
    $$m{ v }^{ 2 }/r\quad =\quad mg\\ \dfrac { m{ u }^{ 2 } }{ 2 } =\quad 2\times mgR\quad +\quad \dfrac { mv^{ 2 } }{ 2 } \\ \Rightarrow \quad u\quad =\quad \sqrt { 5Rg } $$
  • Question 5
    1 / -0
    A cutting tool under microprocessor control has several forces acting on it. One force is $$\vec{F}=-\alpha xy^2\hat{j}$$, a force in the negative y-direction whose magnitude depend on the position of the tool. The constant is $$\alpha  = 2.50\ N/m^3$$. Consider the displacement of the tool from the origin to the point  $$x = 3.00 \,m, y = 3.00 \,m$$. Calculate the work done on the tool by $$\vec{F}$$ if the tool is first moved out along the x-axis to the point $$x = 3.00m, \:y= 0m $$ and then moved parallel to the y-axis to $$x = 3.00m, y = 3.00 \,m$$.
    Solution
    as , $$dW=f.ds$$

    $$W=\int { \vec{F}.\vec{ds} } $$
    and force is only along y-axis ,work done along x- axis is zero
    work done in moving from $$(3,0)$$ to $$(3,3)$$ is

    $$\displaystyle W=\int_0^3 { -\alpha x{ y }^{ 2 }.dy } \cos 180^{\circ} $$ and 

    $$ x= 3$$

    $$\displaystyle W=\int_0^3 { \alpha \times 3 \times { y }^{ 2 }.dy } $$

    $$\displaystyle W=2.5 \times 3 \times  \int _{ 0 }^{ 3 }{ { y }^{ 2 }dy } $$

    $$\displaystyle W=7.5\times\{ \dfrac { { 3 }^{ 3 } }{ 3 } -0\} $$

    $$W=67.5  \ J $$
  • Question 6
    1 / -0
    A particle of mass $$m$$ is suspended by a string of length $$l$$ from a fixed rigid support. A sufficient horizontal velocity $$\displaystyle v_{0}= \sqrt{3gl}$$ is imparted to it suddenly. Calculate the angle made by the string with the vertical when the acceleration of the particle is inclined to the string by $$\displaystyle 45^{\circ}.$$
    Solution
    Given :     $$u  = \sqrt{3gl}$$
    Let the velocity of the bob be  $$v$$ when it reaches the point C.
    From figure,        $$AB  =  l - lcos\theta  = l(1-cos\theta)$$
    Using work-energy theorem :       $$W = \Delta K.E$$
    $$\therefore$$    $$-mg l (1- cos\theta)  = \dfrac{1}{2}mv^2 - \dfrac{1}{2}mu^2$$

    OR        $$-2 gl (1 - cos\theta)  =v^2 - (3gl)$$                       $$\implies v^2  = g l+ 2g lcos\theta$$

    Using         $$a_r  =\dfrac{v^2}{l}   = g + 2g cos\theta $$
    Also  tangential acceleration         $$a_t  =g sin\theta$$
    As the acceleration makes an angle $$45^o$$ with the string, thus       $$tan45^o  = \dfrac{a_t}{a_r}$$
    $$\implies$$      $$a_r = a_t$$
    $$\therefore$$    $$g + 2g cos\theta  = g sin\theta$$
    $$\implies$$        $$sin\theta  - 2cos\theta -1  = 0$$       where  $$\theta  =\dfrac{\pi}{2}$$ satisfies the equation.

  • Question 7
    1 / -0
    The sphere at A is given a downward velocity $$\displaystyle v_{0}$$ of magnitude $$5 m/s$$ and swings in a vertical plane at the end of a rope of length $$l=2 m$$ attached to a support at $$O$$. Determine the angle $$\displaystyle \theta $$ at which the rope will break, knowing that it can withstand a maximum tension equal to twice the weight of the sphere.

    Solution
    Given :         $$v_o  =5  m/s$$                            $$l =2$$ m                      $$T = 2mg$$
    From figure,       $$PM = l sin\theta$$
    Circular motion equation at P :                 $$\dfrac{mv^2}{l} = T - mgsin\theta$$
    OR          $$mv^2  =l( 2mg  - mgsin\theta)  = 2 (2 m \times 10  - m(10) sin\theta)$$
    $$\implies $$    $$mv^2  = m (40  - 20 sin\theta)$$

    Work-energy theorem :               $$W = \Delta K.E$$
    $$\therefore$$    $$mg (PM)  = \dfrac{1}{2}mv^2 - \dfrac{1}{2}mv_o^2$$

    OR         $$2mg (l sin\theta)  =m(40 - 20sin\theta)  - mv_o^2$$
    OR           $$2 m (10) (2 sin\theta)  = m (40 - 20 sin\theta)  - m(25)$$                $$\implies sin\theta  = \dfrac{1}{4}$$

  • Question 8
    1 / -0

    Directions For Questions

    A small sphere B of mass $$m$$ is released from rest in the position shown and swings freely in a vertical plane, first about O and then about the peg A after the cord comes in contact with the peg. Determine the tension in the cord:

    ...view full instructions

    just after it comes in contact with the peg.

    Solution
    Given :    $$r = 0.8$$ m               $$u = 0$$  m/s                     $$OA  =0.4$$ m
    $$\therefore$$     $$AM = r'  =0.8 - 0.4   =0.4$$  m
    After coming in contact with the peg, the sphere rotates in a circle of radius  $$r' =0.4$$ m
    Let the velocity of the sphere when it reaches the point v be  $$v$$.
    From figure,  $$PC  = r sin 30^o  =0.4$$  m

    Work-energy theorem :  $$W =  \Delta K.E$$         
    $$\therefore$$   $$mg (PC) =\dfrac{1}{2} mv^2 - \dfrac{1}{2}mu^2  $$

    OR    $$mg \times 0.4  = \dfrac{mv^2}{2}   - 0$$                      
    $$\implies mv^2 =0.8mg$$

    Using: $$ ma_r =   \dfrac{mv^2}{r'}  = T' - mgsin30^o$$

    $$\therefore$$     $$\dfrac{0.8mg}{0.4}  = T' - \dfrac{mg}{2}$$                      
    $$\implies T' = \dfrac{5mg}{2}$$

  • Question 9
    1 / -0

    Directions For Questions

    A small sphere B of mass $$m$$ is released from rest in the position shown and swings freely in a vertical plane, first about O and then about the peg A after the cord comes in contact with the peg. Determine the tension in the cord:

    ...view full instructions

    just before the sphere comes in contact with the peg.

    Solution
    Given :    $$r = 0.8$$ m               $$u = 0$$  m/s
    Before coming in contact with the peg, the sphere rotates in a circle of radius  $$r =0.8$$ m
    Let the velocity of the sphere when it reaches the point C be  $$v$$.
    From figure, $$PC  = r sin 30^o  = \dfrac{r}{2}$$  m

    Work-energy theorem :  $$W =  \Delta K.E$$         
    $$\therefore$$   $$mg (PC) =\dfrac{1}{2} mv^2 - \dfrac{1}{2}mu^2  $$

    OR    $$mg \times \dfrac{r}{2}  = \dfrac{mv^2}{2}   - 0$$                      

    $$\implies \dfrac{mv^2}{r}  =mg$$

    Using: $$ ma_r =   \dfrac{mv^2}{r}  = T - mgsin30^o$$
    $$\therefore$$     $$mg  = T - \dfrac{mg}{2}$$                     
     $$\implies T = \dfrac{3mg}{2}$$

  • Question 10
    1 / -0

    Directions For Questions

    Bob B of the pendulum AB is given an initial velocity $$\displaystyle \sqrt{3Lg}$$ in horizontal direction. Find the maximum height of the bob from the starting point:

    ...view full instructions

    if AB is a massless rod,

    Solution
    Initial velocity of the rod      $$u  = \sqrt{3Lg}$$
    Let the maximum height attained to be  $$H$$. At the starting point, its potential energy is zero while at the highest point, its kinetic is zero.
    Applying conservation of energy : $$P.E_i + K.E_ i  =P.E_f + K.E_f$$
    $$\therefore$$   $$0 + \dfrac{1}{2}mu^2   =  mgH + 0$$

    $$\implies$$      $$H = \dfrac{u^2}{2g}  = \dfrac{3Lg}{2g}  = \dfrac{3L}{2}$$
Self Studies
User
Question Analysis
  • Correct -

  • Wrong -

  • Skipped -

My Perfomance
  • Score

    -

    out of -
  • Rank

    -

    out of -
Re-Attempt Weekly Quiz Competition
Selfstudy
Selfstudy
Self Studies Get latest Exam Updates
& Study Material Alerts!
No, Thanks
Self Studies
Click on Allow to receive notifications
Allow Notification
Self Studies
Self Studies Self Studies
To enable notifications follow this 2 steps:
  • First Click on Secure Icon Self Studies
  • Second click on the toggle icon
Allow Notification
Get latest Exam Updates & FREE Study Material Alerts!
Self Studies ×
Open Now